On a semigroup of closed connected partial homeomorphisms of the unit interval with a~fixed point
Algebra and discrete mathematics, Tome 12 (2011) no. 2, pp. 38-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the semigroup $\mathfrak{IC}(I,[a])$ ($\mathfrak{IO}(I,[a])$) of closed (open) connected partial homeomorphisms of the unit interval $I$ with a fixed point $a\in I$. We describe left and right ideals of $\mathfrak{IC}(I,[0])$ and the Green's relations on $\mathfrak{IC}(I,[0])$. We show that the semigroup $\mathfrak{IC}(I,[0])$ is bisimple and every non-trivial congruence on $\mathfrak{IC}(I,[0])$ is a group congruence. Also we prove that the semigroup $\mathfrak{IC}(I,[0])$ is isomorphic to the semigroup $\mathfrak{IO}(I,[0])$ and describe the structure of a semigroup $\mathfrak{II}(I,[0])=\mathfrak{IC}(I,[0])\sqcup\mathfrak{IO}(I,[0])$. As a corollary we get structures of semigroups $\mathfrak{IC}(I,[a])$ and $\mathfrak{IO}(I,[a])$ for an interior point $a\in I$.
Keywords: Semigroup of bijective partial transformations, symmetric inverse semigroup, semigroup of homeomorphisms, bisimple semigroup.
Mots-clés : group congruence
@article{ADM_2011_12_2_a3,
     author = {Ivan Chuchman},
     title = {On a semigroup of closed connected partial homeomorphisms of the unit interval with a~fixed point},
     journal = {Algebra and discrete mathematics},
     pages = {38--52},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a3/}
}
TY  - JOUR
AU  - Ivan Chuchman
TI  - On a semigroup of closed connected partial homeomorphisms of the unit interval with a~fixed point
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 38
EP  - 52
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a3/
LA  - en
ID  - ADM_2011_12_2_a3
ER  - 
%0 Journal Article
%A Ivan Chuchman
%T On a semigroup of closed connected partial homeomorphisms of the unit interval with a~fixed point
%J Algebra and discrete mathematics
%D 2011
%P 38-52
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a3/
%G en
%F ADM_2011_12_2_a3
Ivan Chuchman. On a semigroup of closed connected partial homeomorphisms of the unit interval with a~fixed point. Algebra and discrete mathematics, Tome 12 (2011) no. 2, pp. 38-52. http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a3/

[1] O. Andersen, Ein Bericht über die Struktur abstrakter Halbgruppen, PhD Thesis, Hamburg, 1952

[2] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, v. I, Amer. Math. Soc. Surveys, 7, Providence, R.I., 1961 ; v. II, Amer. Math. Soc. Surveys, 7, Providence, R.I., 1967 | MR | Zbl | MR

[3] L. M. Gluskin, “The semi-group of homeomorphic mappings of an interval”, Mat. Sb. (N.S.), 49(91):1 (1959), 13–28 (Russian) | MR | Zbl

[4] L. M. Gluskin, “On some semigroup of continuous functions”, Dopovidi AN URSR, 1960, no. 5, 582–585 (Ukrainian) | MR

[5] W. D. Munn, “Uniform semilattices and bisimple inverse semigroups”, Quart. J. Math., 17:1 (1966), 151–159 | DOI | MR | Zbl

[6] M. Petrich, Inverse Semigroups, John Wiley Sons, New York, 1984 | MR | Zbl

[7] L. B. Shneperman, “Semigroups of continuous transformations”, Dokl. Akad. Nauk SSSR, 144:3 (1962), 509–511 (Russian) | MR | Zbl

[8] L. B. Shneperman, “Semigroups of continuous transformations of closed sets of the number axis”, Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 6, 166–175 (Russian) | MR | Zbl

[9] L. B. Shneperman, “The semigroups of the homeomorphisms of a simple arc”, Izv. Vyssh. Uchebn. Zaved. Mat., 1966, no. 2, 127–136 (Russian) | MR | Zbl

[10] V. V. Wagner, “Generalized groups”, Dokl. Akad. Nauk SSSR, 84 (1952), 1119—1122 (Russian) | MR