Minimax isomorphism algorithm and primitive posets
Algebra and discrete mathematics, Tome 12 (2011) no. 2, pp. 31-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of minimax equivalence of posets, and a close notion of minimax isomorphism, introduced by the author are widely used in the study of quadratic Tits forms (in particular, for the description of $P$-critical and $P$-supercritical posets). In this paper, for an important special case, we modify an algorithm of classifying all posets minimax isomorphic to a given one (described earlier by the author together with M. V. Stepochkina) by introducing the concept of weak isomorphism.
Keywords: critical poset, minimax equivalence, weak isomorphism.
Mots-clés : quadratic Tits form
@article{ADM_2011_12_2_a2,
     author = {Vitalij M. Bondarenko},
     title = {Minimax isomorphism algorithm and primitive posets},
     journal = {Algebra and discrete mathematics},
     pages = {31--37},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a2/}
}
TY  - JOUR
AU  - Vitalij M. Bondarenko
TI  - Minimax isomorphism algorithm and primitive posets
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 31
EP  - 37
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a2/
LA  - en
ID  - ADM_2011_12_2_a2
ER  - 
%0 Journal Article
%A Vitalij M. Bondarenko
%T Minimax isomorphism algorithm and primitive posets
%J Algebra and discrete mathematics
%D 2011
%P 31-37
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a2/
%G en
%F ADM_2011_12_2_a2
Vitalij M. Bondarenko. Minimax isomorphism algorithm and primitive posets. Algebra and discrete mathematics, Tome 12 (2011) no. 2, pp. 31-37. http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a2/

[1] M. M. Kleiner, “Partially ordered sets of finite type”, Zap. Nauchn. Sem. LOMI, 28, 1972, 32–41 (Russian) | MR | Zbl

[2] Ju. A. Drozd, “Coxeter transformations and representations of partially ordered sets”, Funkcional. Anal. i Prilozen., 8:3 (1974), 34–42 (Russian) | MR | Zbl

[3] V. M. Bondarenko, M. V. Stepochkina, “(Min, max)-equivalence of partially ordered sets and quadratic Tits form”, Zb. Pr. Inst. Mat. NAN Ukr., 2:3 (2005), 18–58 (Russian) | MR | Zbl

[4] V. M. Bondarenko, “On (min, max)-equivalence of posets and applications to the Tits forms”, Bull. of the University of Kiev (series: Physics Mathematics), 2005, no. 1, 24–25 | Zbl

[5] L. A. Nazarova, “Partially ordered sets of infinite type”, Izv. Akad. Nauk SSSR Ser. Mat., 39:5 (1975), 963–991 (Russian) | MR

[6] Ukrainian Math. J., 60:9 (2008), 1349–1359 | DOI | MR | Zbl

[7] Ukrainian Math. J., 61:5 (2009), 734–746 | DOI | MR | Zbl

[8] L. A. Nazarova, “Representations of quivers of infinite type”, Izv. Akad. Nauk SSSR Ser. Mat., 37 (1973), 752–791 (Russian) | MR | Zbl

[9] J. Math. Sci. (New York), 164:1 (2010), 26–48 | DOI | MR