On Pseudo-valuation rings and their extensions
Algebra and discrete mathematics, Tome 12 (2011) no. 2, pp. 25-30

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a commutative Noetherian $\mathbb Q$-algebra ($\mathbb Q$ is the field of rational numbers). Let $\sigma$ be an automorphism of $R$ and $\delta$ a $\sigma$-derivation of $R$. We define a $\delta$-divided ring and prove the following: If $R$ is a pseudo-valuation ring such that $x\notin P$ for any prime ideal $P$ of $R[x;\sigma,\delta]$, and $P\cap R$ is a prime ideal of $R$ with $\sigma(P\cap R) = P\cap R$ and $\delta(P\cap R) \subseteq P\cap R$, then $R[x;\sigma,\delta]$ is also a pseudo-valuation ring. If $R$ is a $\delta$-divided ring such that $x\notin P$ for any prime ideal $P$ of $R[x;\sigma,\delta]$, and $P\cap R$ is a prime ideal of $R$ with $\sigma(P\cap R) = P\cap R$ and $\delta(P\cap R) \subseteq P\cap R$, then $R[x;\sigma,\delta]$ is also a $\delta$-divided ring.
Keywords: derivation, strongly prime ideal, divided prime ideal, pseudo-valuation ring.
Mots-clés : automorphism
@article{ADM_2011_12_2_a1,
     author = {V. K. Bhat},
     title = {On {Pseudo-valuation} rings and their extensions},
     journal = {Algebra and discrete mathematics},
     pages = {25--30},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a1/}
}
TY  - JOUR
AU  - V. K. Bhat
TI  - On Pseudo-valuation rings and their extensions
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 25
EP  - 30
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a1/
LA  - en
ID  - ADM_2011_12_2_a1
ER  - 
%0 Journal Article
%A V. K. Bhat
%T On Pseudo-valuation rings and their extensions
%J Algebra and discrete mathematics
%D 2011
%P 25-30
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a1/
%G en
%F ADM_2011_12_2_a1
V. K. Bhat. On Pseudo-valuation rings and their extensions. Algebra and discrete mathematics, Tome 12 (2011) no. 2, pp. 25-30. http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a1/