On Pseudo-valuation rings and their extensions
Algebra and discrete mathematics, Tome 12 (2011) no. 2, pp. 25-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a commutative Noetherian $\mathbb Q$-algebra ($\mathbb Q$ is the field of rational numbers). Let $\sigma$ be an automorphism of $R$ and $\delta$ a $\sigma$-derivation of $R$. We define a $\delta$-divided ring and prove the following: If $R$ is a pseudo-valuation ring such that $x\notin P$ for any prime ideal $P$ of $R[x;\sigma,\delta]$, and $P\cap R$ is a prime ideal of $R$ with $\sigma(P\cap R) = P\cap R$ and $\delta(P\cap R) \subseteq P\cap R$, then $R[x;\sigma,\delta]$ is also a pseudo-valuation ring. If $R$ is a $\delta$-divided ring such that $x\notin P$ for any prime ideal $P$ of $R[x;\sigma,\delta]$, and $P\cap R$ is a prime ideal of $R$ with $\sigma(P\cap R) = P\cap R$ and $\delta(P\cap R) \subseteq P\cap R$, then $R[x;\sigma,\delta]$ is also a $\delta$-divided ring.
Keywords: derivation, strongly prime ideal, divided prime ideal, pseudo-valuation ring.
Mots-clés : automorphism
@article{ADM_2011_12_2_a1,
     author = {V. K. Bhat},
     title = {On {Pseudo-valuation} rings and their extensions},
     journal = {Algebra and discrete mathematics},
     pages = {25--30},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a1/}
}
TY  - JOUR
AU  - V. K. Bhat
TI  - On Pseudo-valuation rings and their extensions
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 25
EP  - 30
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a1/
LA  - en
ID  - ADM_2011_12_2_a1
ER  - 
%0 Journal Article
%A V. K. Bhat
%T On Pseudo-valuation rings and their extensions
%J Algebra and discrete mathematics
%D 2011
%P 25-30
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a1/
%G en
%F ADM_2011_12_2_a1
V. K. Bhat. On Pseudo-valuation rings and their extensions. Algebra and discrete mathematics, Tome 12 (2011) no. 2, pp. 25-30. http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a1/

[1] D. F. Anderson, “Comparability of ideals and valuation rings”, Houston J. Math., 5 (1979), 451–463 | MR | Zbl

[2] D. F. Anderson, “When the dual of an ideal is a ring”, Houston J. Math., 9 (1983), 325–332 | MR | Zbl

[3] S. Annin, “Associated primes over skew polynomial rings”, Commun. Algebra, 30 (2002), 2511–2528 | DOI | MR | Zbl

[4] A. Badawi, D. F. Anderson, and D. E. Dobbs, “Pseudo-valuation rings”, Lecture Notes Pure Appl. Math., 185, Marcel Dekker, New York, 1997, 57–67 | MR | Zbl

[5] A. Badawi, “On domains which have prime ideals that are linearly ordered”, Commun. Algebra, 23 (1995), 4365–4373 | DOI | MR | Zbl

[6] A. Badawi, “On $\phi$-pseudo-valuation rings”, Lecture Notes Pure Appl. Math., 205, Marcel Dekker, New York, 1999, 101–110 | MR | Zbl

[7] V. K. Bhat, “A note on Krull dimension of skew polynomial rings”, Lobachevskii J. Math., 22 (2006), 3–6 | MR | Zbl

[8] V. K. Bhat, “Polynomial rings over pseudovaluation rings”, Int. J. Math. and Math. Sci., 2007, Art. ID 20138, 6 pp. ; doi: 10.1155 | MR

[9] V. K. Bhat, “Associated prime ideals of skew polynomial rings”, Beiträge Algebra Geom., 49:1 (2008), 277–283 | MR | Zbl

[10] W. D. Blair and L. W. Small, “Embedding differential and skew-polynomial rings into artinian rings”, Proc. Amer. Math. Soc., 109:4 (1990), 881–886 | DOI | MR | Zbl

[11] K. R. Goodearl and R. B. Warfield Jr., An introduction to non-commutative Noetherian rings, Cambridge Univ. Press, 1989 | Zbl

[12] J. R. Hedstrom and E. G. Houston, “Pseudo-valuation domains”, Pacific J. Math., 4 (1978), 551–567 | MR

[13] C. Y. Hong, N. K. Kim and T. K. Kwak, “Ore-extensions of Baer and p.p.-rings”, J. Pure and Applied Algebra, 151:3 (2000), 215–226 | MR | Zbl

[14] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley, 1987 ; revised edition: Amer. Math. Soc., 2001 | MR | Zbl