Diagonalizability theorem for matrices over certain domains
Algebra and discrete mathematics, Tome 12 (2011) no. 1, pp. 132-139
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that $R$ is a commutative adequate domain, then $R$ is the domain of stable range 1 in localization in multiplicative closed set which corresponds s-torsion in the sense of Komarnitskii.
Keywords:
a ring of stable range 1, an adequate domain, a co-adequate element, an element of almost stable range 1, an elementary divisors ring.
Mots-clés : a Bezout domain
Mots-clés : a Bezout domain
@article{ADM_2011_12_1_a6,
author = {Bogdan Zabavsky and Olga Domsha},
title = {Diagonalizability theorem for matrices over certain domains},
journal = {Algebra and discrete mathematics},
pages = {132--139},
publisher = {mathdoc},
volume = {12},
number = {1},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a6/}
}
Bogdan Zabavsky; Olga Domsha. Diagonalizability theorem for matrices over certain domains. Algebra and discrete mathematics, Tome 12 (2011) no. 1, pp. 132-139. http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a6/