Diagonalizability theorem for matrices over certain domains
Algebra and discrete mathematics, Tome 12 (2011) no. 1, pp. 132-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that $R$ is a commutative adequate domain, then $R$ is the domain of stable range 1 in localization in multiplicative closed set which corresponds s-torsion in the sense of Komarnitskii.
Keywords: a ring of stable range 1, an adequate domain, a co-adequate element, an element of almost stable range 1, an elementary divisors ring.
Mots-clés : a Bezout domain
@article{ADM_2011_12_1_a6,
     author = {Bogdan Zabavsky and Olga Domsha},
     title = {Diagonalizability theorem for matrices over certain domains},
     journal = {Algebra and discrete mathematics},
     pages = {132--139},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a6/}
}
TY  - JOUR
AU  - Bogdan Zabavsky
AU  - Olga Domsha
TI  - Diagonalizability theorem for matrices over certain domains
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 132
EP  - 139
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a6/
LA  - en
ID  - ADM_2011_12_1_a6
ER  - 
%0 Journal Article
%A Bogdan Zabavsky
%A Olga Domsha
%T Diagonalizability theorem for matrices over certain domains
%J Algebra and discrete mathematics
%D 2011
%P 132-139
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a6/
%G en
%F ADM_2011_12_1_a6
Bogdan Zabavsky; Olga Domsha. Diagonalizability theorem for matrices over certain domains. Algebra and discrete mathematics, Tome 12 (2011) no. 1, pp. 132-139. http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a6/

[1] J. Szucs, “Diagonalization theorem for matrices over certain domains”, Acta sci. math., 36:1–2 (1974), 193–201 | MR

[2] B. Zabavsky, “Reduction of matrices and simultaneously reduction of pair matrices over rings”, Math. studii, 24:1 (2005), 3–11 | MR | Zbl

[3] J. S. Golan, On S-torsion in the sens of Komarnitskii, prerpint, Univer. Haifa, Israll, 1984 | Zbl

[4] Larsen M., Levis W., Shores T., “Elementary divisor rings and finitely presented modules”, Trans. Amer. Math. Soc., 187 (1974), 231–248 | DOI | MR | Zbl

[5] B. Zabavsky, “Generalizated adequate rings”, Ukr. math. journ., 48:4 (1996), 554–557 | MR

[6] L. N. Vaserstein, “Bass's first stable range condition”, J. Pure Appl. Alg., 34 (1984), 319–330 | DOI | MR | Zbl

[7] S. Biliavs'ka, “Elements of stable and almost stable range 1”, Visnik LNU, 2009, no. 71, 5–12

[8] Mc Govern W., “Bezout rings with almost stable range 1 are elementary divisors ring”, J. Pure Appl. Alg., 212 (2007), 340–348 | MR

[9] S. Biliavs'ka, B. Zabavsky, “A stable range of adequate domain”, Math. studii, 48:2 (2008), 212–214