$H$-supplemented modules with respect to a preradical
Algebra and discrete mathematics, Tome 12 (2011) no. 1, pp. 116-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a right $R$-module and $\tau$ a preradical. We call $M$ $\tau$-$H$-supplemented if for every submodule $A$ of $M$ there exists a direct summand $D$ of $M$ such that $(A + D)/D \subseteq \tau(M/D)$ and $(A + D)/A \subseteq \tau(M/A)$. Let $\tau$ be a cohereditary preradical. Firstly, for a duo module $M = M_{1} \oplus M_{2}$ we prove that $M$ is $\tau$-$H$-supplemented if and only if $M_{1}$ and $M_{2}$ are $\tau$-$H$-supplemented. Secondly, let $M=\oplus_{i=1}^nM_i$ be a $\tau$-supplemented module. Assume that $M_i$ is $\tau$-$M_j$-projective for all $j > i$. If each $M_i$ is $\tau$-$H$-supplemented, then $M$ is $\tau$-$H$-supplemented. We also investigate the relations between $\tau$-$H$-supplemented modules and $\tau$-($\oplus$-)supplemented modules.
Keywords: $H$-supplemented module, $\tau$-$H$-supplemented module, $\tau$-lifting module.
@article{ADM_2011_12_1_a5,
     author = {Yahya Talebi and A. R. Moniri Hamzekolaei and Derya Keskin T\"ut\"unc\"u},
     title = {$H$-supplemented modules with respect to a preradical},
     journal = {Algebra and discrete mathematics},
     pages = {116--131},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a5/}
}
TY  - JOUR
AU  - Yahya Talebi
AU  - A. R. Moniri Hamzekolaei
AU  - Derya Keskin Tütüncü
TI  - $H$-supplemented modules with respect to a preradical
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 116
EP  - 131
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a5/
LA  - en
ID  - ADM_2011_12_1_a5
ER  - 
%0 Journal Article
%A Yahya Talebi
%A A. R. Moniri Hamzekolaei
%A Derya Keskin Tütüncü
%T $H$-supplemented modules with respect to a preradical
%J Algebra and discrete mathematics
%D 2011
%P 116-131
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a5/
%G en
%F ADM_2011_12_1_a5
Yahya Talebi; A. R. Moniri Hamzekolaei; Derya Keskin Tütüncü. $H$-supplemented modules with respect to a preradical. Algebra and discrete mathematics, Tome 12 (2011) no. 1, pp. 116-131. http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a5/

[1] M. Alkan, “On $\tau$-lifting and $\tau$-semiperfect modules”, Turkish J. Math., 33 (2009), 117–130 | MR | Zbl

[2] Kh. Al-Takhman, C. Lomp and R. Wisbauer, “$\tau$-complemented and $\tau$-supplemented modules”, Algebra and Discrete Mathematics, 3 (2006), 1–15 | MR | Zbl

[3] L. Bican, T. Kepka and P. Nemec, Rings, Modules and Preradicals, Lect. Notes Pure and App. Math., 75, Marcel Dekker, New York–Basel, 1982 | MR | Zbl

[4] J. L. Garcia, “Properties of direct summands of modules”, Comm. Alg., 17:1 (1989), 73–92 | DOI | MR | Zbl

[5] A. Harmanci, D. Keskin and P. F. Smith, “On $\oplus$-supplemented modules”, Acta Math. Hungar., 83 (1999), 161–169 | DOI | MR | Zbl

[6] by D. Keskin “Finite direct sums of $(D_1)$-modules”, Turkish J. Math., 22:1 (1998), 85–91 | MR | Zbl

[7] D. Keskin, “On lifting modules”, Comm. Alg., 28:7 (2000), 3427–3440 | DOI | MR | Zbl

[8] D. Keskin Tütüncü, M. J. Nematollahi and Y. Talebi, “On $H$-supplemented modules”, Alg. Coll., 18, Spec. 1 (2011), 915–924 | MR

[9] D. Keskin, “Characterizations of right perfect rings by $\oplus$-supplemented modules”, Contemporary Mathematics, 259 (2000), 313–318 | DOI | MR | Zbl

[10] M. T. Koşan and D. Keskin Tütüncü, “$H$-supplemented duo modules”, Journal of Algebra and its Applications, 6:6 (2007), 965–971 | DOI | MR

[11] S.H. Mohamed and B.J. Müller, Continuous and Discrete Modules, London Math. Soc. LNS, 147, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[12] A. Ç. Özcan and M. Alkan, “Semiperfect modules with respect to a preradical”, Comm. Alg., 34 (2006), 841–856 | DOI | MR

[13] Y. Talebi and N. Vanaja, “The torsion theory cogenerated by M-small modules”, Comm. Alg., 30:3 (2002), 1449–1460 | DOI | MR | Zbl

[14] R. Tribak and D. Keskin Tütüncü, “On $\overline Z_M$-semiperfect modules”, East-West J. Math., 8:2 (2006), 193–203 | MR

[15] R. Wisbauer, Foundation of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl

[16] R.B. Warfield Jr., “Decomposability of finitely presented modules”, Proc. Amer. Math. Soc., 25 (1970), 167–172 | DOI | MR | Zbl