Graded limits of minimal affinizations and beyond: the multiplicity free case for type~$E_6$
Algebra and discrete mathematics, Tome 12 (2011) no. 1, pp. 69-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a graded character formula for certain graded modules for the current algebra over a simple Lie algebra of type $E_6$. For certain values of their highest weight, these modules were conjectured to be isomorphic to the classical limit of the corresponding minimal affinizations of the associated quantum group. We prove that this is the case under further restrictions on the highest weight. Under another set of conditions on the highest weight, Chari and Greenstein have recently proved that they are projective objects of a full subcategory of the category of graded modules for the current algebra. Our formula applies to all of these projective modules.
Keywords: minimal affinizations of quantum groups, character formulae, affine Kac-Moody algebras.
@article{ADM_2011_12_1_a4,
     author = {Adriano Moura and Fernanda Pereira},
     title = {Graded limits of minimal affinizations and beyond: the multiplicity free case for type~$E_6$},
     journal = {Algebra and discrete mathematics},
     pages = {69--115},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a4/}
}
TY  - JOUR
AU  - Adriano Moura
AU  - Fernanda Pereira
TI  - Graded limits of minimal affinizations and beyond: the multiplicity free case for type~$E_6$
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 69
EP  - 115
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a4/
LA  - en
ID  - ADM_2011_12_1_a4
ER  - 
%0 Journal Article
%A Adriano Moura
%A Fernanda Pereira
%T Graded limits of minimal affinizations and beyond: the multiplicity free case for type~$E_6$
%J Algebra and discrete mathematics
%D 2011
%P 69-115
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a4/
%G en
%F ADM_2011_12_1_a4
Adriano Moura; Fernanda Pereira. Graded limits of minimal affinizations and beyond: the multiplicity free case for type~$E_6$. Algebra and discrete mathematics, Tome 12 (2011) no. 1, pp. 69-115. http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a4/

[1] V. Chari, “Minimal affinizations of representations of quantum groups: the rank-2 case”, Publ. Res. Inst. Math. Sci., 31 (1995), 873–911 | DOI | MR | Zbl

[2] V. Chari, “On the fermionic formula and the Kirillov-Reshetikhin conjecture”, Int. Math. Res. Not., 2001 (2001), 629–654 | DOI | MR | Zbl

[3] V. Chari, “Braid group actions and tensor products”, Internat. Math. Res. Notices, 2002 (2002), 357–382 | DOI | MR | Zbl

[4] V. Chari and J. Greenstein, “A family of Koszul algebras arising from finite-dimensional representations of simple Lie algebras”, Adv. Math., 220:4 (2009), 1193–1221 | DOI | MR | Zbl

[5] V. Chari and J. Greenstein, “Minimal affinizations as projective objects”, Journal of Geometry and Physics, 61:9, 1717–1732 | DOI | MR | Zbl

[6] V. Chari and D. Hernandez, “Beyond Kirillov-Reshetikhin modules”, Contemp. Math., 506 (2010), 49–81 | DOI | MR | Zbl

[7] V. Chari and M. Kleber, “Symmetric Functions and Representations of Quantum Affine Algebras”, Contemp. Math., 297 (2002), 27–45 | DOI | MR | Zbl

[8] V. Chari and A. Moura, “Characters and blocks for finite-dimensional representations of quantum affine algebras”, Internat. Math Res. Notices, 2005 (2005), 257–298 | DOI | MR | Zbl

[9] V. Chari and A. Moura, “The restricted Kirillov-Reshetikhin modules for the current and twisted current algebras”, Comm. Math. Phys., 266 (2006), 431–454 | DOI | MR | Zbl

[10] V. Chari and A. Moura, “Kirillov–Reshetikhin modules associated to $G_2$”, Contemp. Math., 442 (2007), 41–59 | DOI | MR | Zbl

[11] V. Chari and A. Pressley, A guide to quantum groups, Cambridge University Press, 1994 | MR | Zbl

[12] V. Chari and A. Pressley, “Minimal affinizations of representations of quantum groups: the simply laced case”, J. of Algebra, 184 (1996), 1–30 | DOI | MR | Zbl

[13] V. Chari and A. Pressley, “Weyl modules for classical and quantum affine algebras”, Represent. Theory, 5 (2001), 191–223 | DOI | MR | Zbl

[14] E. Frenkel and E. Mukhin, “Combinatorics of $q$-characters of finite-dimensional representations of quantum affine algebras”, Comm. Math. Phys., 216 (2001), 23–57 | DOI | MR | Zbl

[15] E. Frenkel and N. Reshetikhin, “The $q$-characters of representations of quantum affine algebras and deformations of $\mathcal W$-algebras”, Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), Contemp. Math., 248, 1999, 163–205 | DOI | MR | Zbl

[16] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, and Y. Yamada, “Remarks on the Fermionic Formula”, Contemp. Math., 248 (1999), 243–291 | DOI | MR | Zbl

[17] D. Hernandez, “The Kirillov-Reshetikhin conjecture and solutions of T-systems”, J. Reine Angew. Math., 596 (2006), 63–87 | MR | Zbl

[18] D. Hernandez, “Kirillov-Reshetikhin conjecture : the general case”, Int. Math. Res. Not., 2010:1 (2010), 149–193 | MR | Zbl

[19] J. Humphreys, Introduction to Lie algebras and representation theory, GTM9 Springer, 1972 | MR

[20] D. Jakelić and A. Moura, “Tensor products, characters, and blocks of finite-dimensional representations of quantum affine algebras at roots of unity”, Int. Math. Res. Notices, 2011:18 (2011), 4147–4199 ; doi: 10.1093/imrn/rnq250 | MR | Zbl

[21] G. Lusztig, Introduction to quantum groups, Birkäuser, 1993 | MR | Zbl

[22] A. Moura, “Restricted limits of minimal affinizations”, Pacific J. Math., 244 (2010), 359–397 | DOI | MR | Zbl

[23] H. Nakajima, “Quiver varieties and $t$-analogs of $q$-characters of quantum affine algebras”, Ann. of Math., 160 (2004), 1057–1097 | DOI | MR

[24] F. Pereira, Caracteres de limites clássicos de afinizações minimais de tipo $E_6$, M.Sc. Thesis, Unicamp, 2010