Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2011_12_1_a4, author = {Adriano Moura and Fernanda Pereira}, title = {Graded limits of minimal affinizations and beyond: the multiplicity free case for type~$E_6$}, journal = {Algebra and discrete mathematics}, pages = {69--115}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a4/} }
TY - JOUR AU - Adriano Moura AU - Fernanda Pereira TI - Graded limits of minimal affinizations and beyond: the multiplicity free case for type~$E_6$ JO - Algebra and discrete mathematics PY - 2011 SP - 69 EP - 115 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a4/ LA - en ID - ADM_2011_12_1_a4 ER -
%0 Journal Article %A Adriano Moura %A Fernanda Pereira %T Graded limits of minimal affinizations and beyond: the multiplicity free case for type~$E_6$ %J Algebra and discrete mathematics %D 2011 %P 69-115 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a4/ %G en %F ADM_2011_12_1_a4
Adriano Moura; Fernanda Pereira. Graded limits of minimal affinizations and beyond: the multiplicity free case for type~$E_6$. Algebra and discrete mathematics, Tome 12 (2011) no. 1, pp. 69-115. http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a4/
[1] V. Chari, “Minimal affinizations of representations of quantum groups: the rank-2 case”, Publ. Res. Inst. Math. Sci., 31 (1995), 873–911 | DOI | MR | Zbl
[2] V. Chari, “On the fermionic formula and the Kirillov-Reshetikhin conjecture”, Int. Math. Res. Not., 2001 (2001), 629–654 | DOI | MR | Zbl
[3] V. Chari, “Braid group actions and tensor products”, Internat. Math. Res. Notices, 2002 (2002), 357–382 | DOI | MR | Zbl
[4] V. Chari and J. Greenstein, “A family of Koszul algebras arising from finite-dimensional representations of simple Lie algebras”, Adv. Math., 220:4 (2009), 1193–1221 | DOI | MR | Zbl
[5] V. Chari and J. Greenstein, “Minimal affinizations as projective objects”, Journal of Geometry and Physics, 61:9, 1717–1732 | DOI | MR | Zbl
[6] V. Chari and D. Hernandez, “Beyond Kirillov-Reshetikhin modules”, Contemp. Math., 506 (2010), 49–81 | DOI | MR | Zbl
[7] V. Chari and M. Kleber, “Symmetric Functions and Representations of Quantum Affine Algebras”, Contemp. Math., 297 (2002), 27–45 | DOI | MR | Zbl
[8] V. Chari and A. Moura, “Characters and blocks for finite-dimensional representations of quantum affine algebras”, Internat. Math Res. Notices, 2005 (2005), 257–298 | DOI | MR | Zbl
[9] V. Chari and A. Moura, “The restricted Kirillov-Reshetikhin modules for the current and twisted current algebras”, Comm. Math. Phys., 266 (2006), 431–454 | DOI | MR | Zbl
[10] V. Chari and A. Moura, “Kirillov–Reshetikhin modules associated to $G_2$”, Contemp. Math., 442 (2007), 41–59 | DOI | MR | Zbl
[11] V. Chari and A. Pressley, A guide to quantum groups, Cambridge University Press, 1994 | MR | Zbl
[12] V. Chari and A. Pressley, “Minimal affinizations of representations of quantum groups: the simply laced case”, J. of Algebra, 184 (1996), 1–30 | DOI | MR | Zbl
[13] V. Chari and A. Pressley, “Weyl modules for classical and quantum affine algebras”, Represent. Theory, 5 (2001), 191–223 | DOI | MR | Zbl
[14] E. Frenkel and E. Mukhin, “Combinatorics of $q$-characters of finite-dimensional representations of quantum affine algebras”, Comm. Math. Phys., 216 (2001), 23–57 | DOI | MR | Zbl
[15] E. Frenkel and N. Reshetikhin, “The $q$-characters of representations of quantum affine algebras and deformations of $\mathcal W$-algebras”, Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), Contemp. Math., 248, 1999, 163–205 | DOI | MR | Zbl
[16] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, and Y. Yamada, “Remarks on the Fermionic Formula”, Contemp. Math., 248 (1999), 243–291 | DOI | MR | Zbl
[17] D. Hernandez, “The Kirillov-Reshetikhin conjecture and solutions of T-systems”, J. Reine Angew. Math., 596 (2006), 63–87 | MR | Zbl
[18] D. Hernandez, “Kirillov-Reshetikhin conjecture : the general case”, Int. Math. Res. Not., 2010:1 (2010), 149–193 | MR | Zbl
[19] J. Humphreys, Introduction to Lie algebras and representation theory, GTM9 Springer, 1972 | MR
[20] D. Jakelić and A. Moura, “Tensor products, characters, and blocks of finite-dimensional representations of quantum affine algebras at roots of unity”, Int. Math. Res. Notices, 2011:18 (2011), 4147–4199 ; doi: 10.1093/imrn/rnq250 | MR | Zbl
[21] G. Lusztig, Introduction to quantum groups, Birkäuser, 1993 | MR | Zbl
[22] A. Moura, “Restricted limits of minimal affinizations”, Pacific J. Math., 244 (2010), 359–397 | DOI | MR | Zbl
[23] H. Nakajima, “Quiver varieties and $t$-analogs of $q$-characters of quantum affine algebras”, Ann. of Math., 160 (2004), 1057–1097 | DOI | MR
[24] F. Pereira, Caracteres de limites clássicos de afinizações minimais de tipo $E_6$, M.Sc. Thesis, Unicamp, 2010