The influence of weakly $s$-permutably embedded subgroups on the $p$-nilpotency of finite groups
Algebra and discrete mathematics, Tome 12 (2011) no. 1, pp. 20-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $G$ is a finite group and $H$ is a subgroup of $G$. $H$ is said to be $s$-permutably embedded in $G$ if for each prime $p$ dividing $|H|$, a Sylow $p$-subgroup of $H$ is also a Sylow $p$-subgroup of some $s$-permutable subgroup of $G$; $H$ is called weakly $s$-permutably embedded in $G$ if there are a subnormal subgroup $T$ of $G$ and an $s$-permutably embedded subgroup $H_{se}$ of $G$ contained in $H$ such that $G=HT$ and $H\cap T\leq H_{se}$. We investigate the influence of weakly $s$-permutably embedded subgroups on the $p$-nilpotency of finite groups.
Keywords: weakly $s$-permutably embedded subgroups; $p$-nilpotent; maximal subgroup; 2-maximal subgroup.
@article{ADM_2011_12_1_a1,
     author = {Changwen Li},
     title = {The influence of weakly $s$-permutably embedded subgroups on the $p$-nilpotency of finite groups},
     journal = {Algebra and discrete mathematics},
     pages = {20--27},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a1/}
}
TY  - JOUR
AU  - Changwen Li
TI  - The influence of weakly $s$-permutably embedded subgroups on the $p$-nilpotency of finite groups
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 20
EP  - 27
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a1/
LA  - en
ID  - ADM_2011_12_1_a1
ER  - 
%0 Journal Article
%A Changwen Li
%T The influence of weakly $s$-permutably embedded subgroups on the $p$-nilpotency of finite groups
%J Algebra and discrete mathematics
%D 2011
%P 20-27
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a1/
%G en
%F ADM_2011_12_1_a1
Changwen Li. The influence of weakly $s$-permutably embedded subgroups on the $p$-nilpotency of finite groups. Algebra and discrete mathematics, Tome 12 (2011) no. 1, pp. 20-27. http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a1/

[1] O. H. Kegel, “Sylow-Gruppen and subnormalteiler endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | DOI | MR | Zbl

[2] A. Ballester-Bolinches and M. C. Pedraza-Aguilera, “Sufficient conditions for supersolvability of finite groups”, J. Pure Appl. Algebra, 127 (1998), 113–118 | DOI | MR | Zbl

[3] Y. Wang, “$c$-Normality of groups and its properties”, J. Algebra, 180 (1996), 954–965 | DOI | MR | Zbl

[4] A. N. Skiba, “On weakly $s$-permutable subgroups of finite groups”, J. Algebra, 315 (2007), 192–209 | DOI | MR | Zbl

[5] H. Wei and Y. Wang, “On $c^{\ast}$-normality and its properties”, J. Group Theory, 10 (2007), 211–223 | DOI | MR

[6] Y. Li, S. Qiao and Y. Wang, “On weakly $s$-permutably embedded subgroups of finite groups”, Comm. Algebra, 37 (2009), 1086–1097 | DOI | MR | Zbl

[7] K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[8] Y. Li, Y. Wang and H. Wei, “On $p$-nilpotency of finite groups with some subgroups $\pi$-quasinormally embedded”, Acta. Math. Hungar., 108:4 (2005), 283–298 | DOI | MR | Zbl

[9] J. G. Thompson, “Normal $p$-complements for finite groups”, J. Algebra, 1 (1964), 43–46 | DOI | MR | Zbl

[10] D. Gorenstein, Finite groups, Chelsea, New York, 1968 | MR

[11] D. J. S. Robinson, A course in the theory of groups, Springer-Verlag, New York–Berlin, 1993 | MR

[12] W. Guo, The theory of classes of groups, Science Press-Kluwer Academic Publishers, Beijing–Boston, 2000 | MR

[13] B. Huppert, Endiche Gruppen I, Springer-Verlag, Berlin, 1967 | MR | Zbl

[14] P. Schmidt, “Subgroups permutable with all Sylow subgroups”, J. Algebra, 207 (1998), 285–293 | DOI | MR

[15] M. Asaad and A. A. Heliel, “On $s$-quasinormally embedded subgroups of finite groups”, J. Pure Appl. Algebra, 165 (2001), 129–135 | DOI | MR | Zbl