The influence of weakly $s$-permutably embedded subgroups on the $p$-nilpotency of finite groups
Algebra and discrete mathematics, Tome 12 (2011) no. 1, pp. 20-27

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $G$ is a finite group and $H$ is a subgroup of $G$. $H$ is said to be $s$-permutably embedded in $G$ if for each prime $p$ dividing $|H|$, a Sylow $p$-subgroup of $H$ is also a Sylow $p$-subgroup of some $s$-permutable subgroup of $G$; $H$ is called weakly $s$-permutably embedded in $G$ if there are a subnormal subgroup $T$ of $G$ and an $s$-permutably embedded subgroup $H_{se}$ of $G$ contained in $H$ such that $G=HT$ and $H\cap T\leq H_{se}$. We investigate the influence of weakly $s$-permutably embedded subgroups on the $p$-nilpotency of finite groups.
Keywords: weakly $s$-permutably embedded subgroups; $p$-nilpotent; maximal subgroup; 2-maximal subgroup.
@article{ADM_2011_12_1_a1,
     author = {Changwen Li},
     title = {The influence of weakly $s$-permutably embedded subgroups on the $p$-nilpotency of finite groups},
     journal = {Algebra and discrete mathematics},
     pages = {20--27},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a1/}
}
TY  - JOUR
AU  - Changwen Li
TI  - The influence of weakly $s$-permutably embedded subgroups on the $p$-nilpotency of finite groups
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 20
EP  - 27
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a1/
LA  - en
ID  - ADM_2011_12_1_a1
ER  - 
%0 Journal Article
%A Changwen Li
%T The influence of weakly $s$-permutably embedded subgroups on the $p$-nilpotency of finite groups
%J Algebra and discrete mathematics
%D 2011
%P 20-27
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a1/
%G en
%F ADM_2011_12_1_a1
Changwen Li. The influence of weakly $s$-permutably embedded subgroups on the $p$-nilpotency of finite groups. Algebra and discrete mathematics, Tome 12 (2011) no. 1, pp. 20-27. http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a1/