Free rectangular dibands and free dimonoids
Algebra and discrete mathematics, Tome 11 (2011) no. 2, pp. 92-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a free rectangular diband and describe its structure. We also present the least rectangular diband congruence, the least $(rb,rz)$-congruence, the least left zero and right zero congruence, the least rectangular band congruence and the least left zero congruence on free dimonoids and use them to obtain decompositions of free dimonoids.
Keywords: rectangular dimonoid, free rectangular dimonoid, free dimonoid, diband of subdimonoids.
@article{ADM_2011_11_2_a6,
     author = {Anatolii V. Zhuchok},
     title = {Free rectangular dibands and free  dimonoids},
     journal = {Algebra and discrete mathematics},
     pages = {92--111},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a6/}
}
TY  - JOUR
AU  - Anatolii V. Zhuchok
TI  - Free rectangular dibands and free  dimonoids
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 92
EP  - 111
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a6/
LA  - en
ID  - ADM_2011_11_2_a6
ER  - 
%0 Journal Article
%A Anatolii V. Zhuchok
%T Free rectangular dibands and free  dimonoids
%J Algebra and discrete mathematics
%D 2011
%P 92-111
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a6/
%G en
%F ADM_2011_11_2_a6
Anatolii V. Zhuchok. Free rectangular dibands and free  dimonoids. Algebra and discrete mathematics, Tome 11 (2011) no. 2, pp. 92-111. http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a6/

[1] L.A. Bokut, Yuqun Chen and Cihua Liu, “Gröbner–Shirshov bases for dialgebras”, Int. J. Algebra Comput., 20:3 (2010), 391–415 | DOI | MR | Zbl

[2] A.H. Clifford, “Bands of semigroups”, Proc. Amer. Math. Soc., 5 (1954), 499–504 | DOI | MR | Zbl

[3] R. Felipe, “An analogue to functional analysis in dialgebras”, Int. Math. Forum, 2:21–24, 1069–1091 (2007) | MR

[4] J.-L. Loday, “Dialgebras”, Dialgebras and related operads, Lect. Notes Math., 1763, Springer-Verlag, Berlin, 2001, 7–66 | DOI | MR | Zbl

[5] A. Malchev, Algebraic systems, Publish. «Nauka», Moscow, 1970, 392 pp. (Russian) | MR

[6] M. Petrich, P.V. Silva, “Structure of relatively free bands”, Commun. Algebra, 30:9 (2002), 4165–4187 | DOI | MR | Zbl

[7] T. Pirashvili, “Sets with two associative operations”, Cent. Eur. J. Math., 2 (2003), 169–183 | DOI | MR | Zbl

[8] A.P. Pozhidaev, “$0$-Dialgebras with bar-unity and nonassociative Rota-Baxter algebras”, Sib. Mat. Zh., 50:6 (2009), 1070–1080 | DOI | MR | Zbl

[9] M.S. Putcha, “Semilattice decompositions of semigroups”, Semigroup Forum, 6 (1973), 12–34 | DOI | MR | Zbl

[10] B.M. Schein, “Restrictive bisemigroups”, Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 1, 168–179 (Russian) | MR | Zbl

[11] A.V. Zhuchok, “Free dimonoids”, Ukr. Math. J., 63:2 (2011), 165–175 (Ukrainian) | DOI | MR | Zbl

[12] A.V. Zhuchok, “Free commutative dimonoids”, Algebra and Discrete Math., 9:1 (2010), 109–119 | MR

[13] A.V. Zhuchok, “Semilattices of subdimonoids”, Asian-Eur. J. Math., 4:2 (2011), 359–371 | DOI | MR | Zbl

[14] A.V. Zhuchok, “Dibands of subdimonoids”, Mat. Stud., 33 (2010), 120–124 | MR | Zbl

[15] A.V. Zhuchok, “Commutative dimonoids”, Algebra and Discrete Math., 2 (2009), 116–127 | MR | Zbl