On partial Galois Azumaya extensions
Algebra and discrete mathematics, Tome 11 (2011) no. 2, pp. 64-77

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\alpha$ be a globalizable partial action of a finite group $G$ over a unital ring $R$, $A=R\star_\alpha G$ the corresponding partial skew group ring, $R^\alpha$ the subring of the $\alpha$-invariant elements of $R$ and $\alpha^\star$ the partial inner action of $G$ (induced by $\alpha$) on the centralizer $C_A(R)$ of $R$ in $A$. In this paper we present equivalent conditions to characterize $R$ as an $\alpha$-partial Galois Azumaya extension of $R^\alpha$ and $C_A(R)$ as an $\alpha^\star$-partial Galois extension of the center $C(A)$ of $A$. In particular, we extend to the setting of partial group actions similar results due to R. Alfaro and G. Szeto [1, 2, 3].
Keywords: partial skew group ring
Mots-clés : partial group action, partial Galois extension, partial Galois Azumaya extension.
@article{ADM_2011_11_2_a3,
     author = {Daiane Freitas and Antonio Paques},
     title = {On partial {Galois} {Azumaya} extensions},
     journal = {Algebra and discrete mathematics},
     pages = {64--77},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a3/}
}
TY  - JOUR
AU  - Daiane Freitas
AU  - Antonio Paques
TI  - On partial Galois Azumaya extensions
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 64
EP  - 77
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a3/
LA  - en
ID  - ADM_2011_11_2_a3
ER  - 
%0 Journal Article
%A Daiane Freitas
%A Antonio Paques
%T On partial Galois Azumaya extensions
%J Algebra and discrete mathematics
%D 2011
%P 64-77
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a3/
%G en
%F ADM_2011_11_2_a3
Daiane Freitas; Antonio Paques. On partial Galois Azumaya extensions. Algebra and discrete mathematics, Tome 11 (2011) no. 2, pp. 64-77. http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a3/