On partial Galois Azumaya extensions
Algebra and discrete mathematics, Tome 11 (2011) no. 2, pp. 64-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\alpha$ be a globalizable partial action of a finite group $G$ over a unital ring $R$, $A=R\star_\alpha G$ the corresponding partial skew group ring, $R^\alpha$ the subring of the $\alpha$-invariant elements of $R$ and $\alpha^\star$ the partial inner action of $G$ (induced by $\alpha$) on the centralizer $C_A(R)$ of $R$ in $A$. In this paper we present equivalent conditions to characterize $R$ as an $\alpha$-partial Galois Azumaya extension of $R^\alpha$ and $C_A(R)$ as an $\alpha^\star$-partial Galois extension of the center $C(A)$ of $A$. In particular, we extend to the setting of partial group actions similar results due to R. Alfaro and G. Szeto [1, 2, 3].
Keywords: partial skew group ring
Mots-clés : partial group action, partial Galois extension, partial Galois Azumaya extension.
@article{ADM_2011_11_2_a3,
     author = {Daiane Freitas and Antonio Paques},
     title = {On partial {Galois} {Azumaya} extensions},
     journal = {Algebra and discrete mathematics},
     pages = {64--77},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a3/}
}
TY  - JOUR
AU  - Daiane Freitas
AU  - Antonio Paques
TI  - On partial Galois Azumaya extensions
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 64
EP  - 77
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a3/
LA  - en
ID  - ADM_2011_11_2_a3
ER  - 
%0 Journal Article
%A Daiane Freitas
%A Antonio Paques
%T On partial Galois Azumaya extensions
%J Algebra and discrete mathematics
%D 2011
%P 64-77
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a3/
%G en
%F ADM_2011_11_2_a3
Daiane Freitas; Antonio Paques. On partial Galois Azumaya extensions. Algebra and discrete mathematics, Tome 11 (2011) no. 2, pp. 64-77. http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a3/

[1] R. Alfaro and G. Szeto, “The centralizer on H-separable skew group rings”, Rings, Extensions and Cohomology (Evanston, IL, 1993), Lecture Notes in Pure and Appl. Math., 159, Dekker, New York, 1994, 1–7 | MR | Zbl

[2] R. Alfaro and G. Szeto, “Skew group rings which are Azumaya”, Comm. Algebra, 23 (1995), 2255–2261 | DOI | MR | Zbl

[3] R. Alfaro and G. Szeto, “On Galois extensions of an Azumaya algebra”, Comm. Algebra, 25 (1997), 1873–1882 | DOI | MR | Zbl

[4] D. Bagio, J. Lazzarin and A. Paques, “Crosssed products by twisted partial actions: separability, semisimplicity and Frobenius properties”, Comm. Algebra, 38 (2010), 496–508 | DOI | MR | Zbl

[5] P. Carvalho, “On the Azumaya locus of some crossed products”, Comm. Algebra, 33 (2005), 51–72 | DOI | MR | Zbl

[6] F.R. DeMeyer and G.J. Janusz, “Group rings that are Azumaya”, Trans. AMS, 279 (1983), 389–395 | DOI | MR | Zbl

[7] Dokuchaev, M., Exel, R., “Associativity of crossed products by partial actions, enveloping actions and partial representations”, Trans. AMS, 357 (2005), 1931–1952 | DOI | MR | Zbl

[8] M. Dokuchaev, M. Ferrero and A. Paques, “Partial actions and Galois theory”, J. Pure Appl. Algebra, 208 (2007), 77—87 | DOI | MR | Zbl

[9] M. Harada, “Suplementary results on Galois extensions”, Osaka J. Math., 2 (1965), 287–295 | MR

[10] K. Hirata, “Some types of separable extensions of rings”, Nagoya Math. J., 33 (1968), 107–115 | MR | Zbl

[11] K. Hirata and K. Sugano, “On semisimple extensions and separable extensions over noncommutative rings”, J. Math. Soc. Japan, 18 (1966), 360–373 | DOI | MR | Zbl

[12] S. Ikehata, “Note on Azumaya algebras and H-separable extensions”, Math. J. Okayama Univ., 23 (1981), 17–18 | MR | Zbl

[13] H. Okamoto, H. Komatsu and S. Ikehata, “On H-separable extension in Azumaya algebras”, Math. J. Okayama Univ., 29 (1987), 103–107 | MR | Zbl

[14] M. Ouyang, “Azumaya extensions and Galois correspondences”, Algebra Colloquium, 7 (2000), 43–57 | DOI | MR | Zbl

[15] A. Paques, V. Rodrigues and A. Sant'Ana, “Galois correspondences for partial Galois Azumaya extensions”, J. Algebra Appl., 2011 (to appear) | MR

[16] A. Paques and A. Sant'Ana, “When is a crossed product by a twisted partial action Azumaya?”, Comm. Algebra, 38 (2010), 1093–1103 | DOI | MR | Zbl

[17] K. Sugano, “Note on semisimples extensions and separable extensions”, Osaka J. Math., 4 (1967), 265–270 | MR | Zbl

[18] K. Sugano, “Separable extensions and Frobenius extensions”, Osaka J. Math., 7 (1970), 291–299 | MR | Zbl

[19] G. Szeto and Y.-F. Wong, “On Azumaya projective group rings”, Contemporary Math., 124 (1992), 251–256 | DOI | MR | Zbl