On the generators of the kernels of hyperbolic group presentations
Algebra and discrete mathematics, Tome 11 (2011) no. 2, pp. 18-50

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that if $\mathcal R$ is a (not necessarily finite) set of words satisfying certain small cancellation condition in a hyperbolic group $G$ then the normal closure of $\mathcal R$ is free. This result was first presented (for finite set $\mathcal R$) by T. Delzant [Delz] but the proof seems to require some additional argument. New applications of this theorem are provided.
Keywords: hyperbolic groups, small cancellation.
@article{ADM_2011_11_2_a1,
     author = {Vladimir Chaynikov},
     title = {On the generators of the kernels of hyperbolic group presentations},
     journal = {Algebra and discrete mathematics},
     pages = {18--50},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a1/}
}
TY  - JOUR
AU  - Vladimir Chaynikov
TI  - On the generators of the kernels of hyperbolic group presentations
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 18
EP  - 50
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a1/
LA  - en
ID  - ADM_2011_11_2_a1
ER  - 
%0 Journal Article
%A Vladimir Chaynikov
%T On the generators of the kernels of hyperbolic group presentations
%J Algebra and discrete mathematics
%D 2011
%P 18-50
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a1/
%G en
%F ADM_2011_11_2_a1
Vladimir Chaynikov. On the generators of the kernels of hyperbolic group presentations. Algebra and discrete mathematics, Tome 11 (2011) no. 2, pp. 18-50. http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a1/