On the generators of the kernels of hyperbolic group presentations
Algebra and discrete mathematics, Tome 11 (2011) no. 2, pp. 18-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that if $\mathcal R$ is a (not necessarily finite) set of words satisfying certain small cancellation condition in a hyperbolic group $G$ then the normal closure of $\mathcal R$ is free. This result was first presented (for finite set $\mathcal R$) by T. Delzant [Delz] but the proof seems to require some additional argument. New applications of this theorem are provided.
Keywords: hyperbolic groups, small cancellation.
@article{ADM_2011_11_2_a1,
     author = {Vladimir Chaynikov},
     title = {On the generators of the kernels of hyperbolic group presentations},
     journal = {Algebra and discrete mathematics},
     pages = {18--50},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a1/}
}
TY  - JOUR
AU  - Vladimir Chaynikov
TI  - On the generators of the kernels of hyperbolic group presentations
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 18
EP  - 50
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a1/
LA  - en
ID  - ADM_2011_11_2_a1
ER  - 
%0 Journal Article
%A Vladimir Chaynikov
%T On the generators of the kernels of hyperbolic group presentations
%J Algebra and discrete mathematics
%D 2011
%P 18-50
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a1/
%G en
%F ADM_2011_11_2_a1
Vladimir Chaynikov. On the generators of the kernels of hyperbolic group presentations. Algebra and discrete mathematics, Tome 11 (2011) no. 2, pp. 18-50. http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a1/

[Delz] T. Delzant, “Sous Groupes Distingues et Quotients des Groupes Hyperboliques”, Duke Math. J., 83:3 (1996) | DOI | MR | Zbl

[Ghys] E. Ghys, P. de la Harpe, Sur Les Groupes Hyperboliques D'apres Mikhael Gromov, Birkhäuser, 1990 | MR | Zbl

[Gro] M. Gromov, Hyperbolic Groups, Essays in group theory, MSRI Publications, Springer, 1987 | MR | Zbl

[Kour] Edited by V. D. Mazurov and E. I. Khukhro, The Kourovka Notebook, v. 15, Russian Academy of Sciences Siberian Division, Institute of Mathematics, Novosibirsk, 2002

[LSch] M. Lyndon, P. Schupp, Combinatorial group theory, Springer, 1977 | MR | Zbl

[Olsh] A. Yu. Olshanskii, Geometry of defining relations in groups, Kluwer, 1991 | MR

[Olsh93] A. Yu. Olshanskii, “On residualizing homomorphisms and G-subgroups of hyperbolic groups”, IJAC, 3:4 (1993) | MR

[Olsh95] A. Yu. Olshanskii, “SQ-universality of hyperbolic groups”, Mat. Sbornik, 186:8 (1995), 119–132 (Russian) | MR

[IvOl] S. V. Ivanov, A. Yu. Olshanskii, “Hyperbolic groups and their quotients of bounded exponents”, Trans. Amer. Math. Soc., 348 (1996), 2091–2138 | DOI | MR | Zbl

[OlOsSa] Alexander Yu. Olshanskii, Denis V. Osin and Mark V. Sapir, “Lacunary hyperbolic groups”, Geometry Topology, 13 (2009), 2051–2140 | DOI | MR | Zbl

[Swe] E. Swenson, “Hyperbolic elements in negatively curved groups”, Geometriae Dedicada, 55:2, 199–210 | DOI | MR | Zbl