A generalization of supplemented modules
Algebra and discrete mathematics, Tome 11 (2011) no. 1, pp. 59-74
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be an arbitrary ring with identity and $M$ a right $R$-module. In this paper, we introduce a class of
modules which is an analogous of $\delta$-supplemented modules defined by Kosan. The module $M$ is called principally $\delta$-supplemented, for all $m\in M$ there exists a submodule $A$ of $M$ with $M = mR + A$ and $(mR)\cap A$ $\delta$-small in $A$. We prove that some results of $\delta$-supplemented modules can be extended to principally $\delta$-supplemented modules for this general settings. We supply some examples showing that there are principally $\delta$-supplemented modules but not $\delta$-supplemented. We also introduce principally $\delta$-semiperfect modules as a generalization of $\delta$-semiperfect modules and investigate their properties.
Keywords:
supplemented modules, $\delta$-supplemented modules, principally $\delta$-supplemented modules
Mots-clés : semiperfect modules, $\delta$-semiperfect modules, principally $\delta$-semiperfect modules.
Mots-clés : semiperfect modules, $\delta$-semiperfect modules, principally $\delta$-semiperfect modules.
@article{ADM_2011_11_1_a4,
author = {Hatice Inankil and Sait Hal{\i}c{\i}oglu and Abdullah Harmanci},
title = {A generalization of supplemented modules},
journal = {Algebra and discrete mathematics},
pages = {59--74},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2011_11_1_a4/}
}
TY - JOUR AU - Hatice Inankil AU - Sait Halıcıoglu AU - Abdullah Harmanci TI - A generalization of supplemented modules JO - Algebra and discrete mathematics PY - 2011 SP - 59 EP - 74 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2011_11_1_a4/ LA - en ID - ADM_2011_11_1_a4 ER -
Hatice Inankil; Sait Halıcıoglu; Abdullah Harmanci. A generalization of supplemented modules. Algebra and discrete mathematics, Tome 11 (2011) no. 1, pp. 59-74. http://geodesic.mathdoc.fr/item/ADM_2011_11_1_a4/