A generalization of supplemented modules
Algebra and discrete mathematics, Tome 11 (2011) no. 1, pp. 59-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be an arbitrary ring with identity and $M$ a right $R$-module. In this paper, we introduce a class of modules which is an analogous of $\delta$-supplemented modules defined by Kosan. The module $M$ is called principally $\delta$-supplemented, for all $m\in M$ there exists a submodule $A$ of $M$ with $M = mR + A$ and $(mR)\cap A$ $\delta$-small in $A$. We prove that some results of $\delta$-supplemented modules can be extended to principally $\delta$-supplemented modules for this general settings. We supply some examples showing that there are principally $\delta$-supplemented modules but not $\delta$-supplemented. We also introduce principally $\delta$-semiperfect modules as a generalization of $\delta$-semiperfect modules and investigate their properties.
Keywords: supplemented modules, $\delta$-supplemented modules, principally $\delta$-supplemented modules
Mots-clés : semiperfect modules, $\delta$-semiperfect modules, principally $\delta$-semiperfect modules.
@article{ADM_2011_11_1_a4,
     author = {Hatice Inankil and Sait Hal{\i}c{\i}oglu and Abdullah Harmanci},
     title = {A generalization of supplemented modules},
     journal = {Algebra and discrete mathematics},
     pages = {59--74},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_11_1_a4/}
}
TY  - JOUR
AU  - Hatice Inankil
AU  - Sait Halıcıoglu
AU  - Abdullah Harmanci
TI  - A generalization of supplemented modules
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 59
EP  - 74
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_11_1_a4/
LA  - en
ID  - ADM_2011_11_1_a4
ER  - 
%0 Journal Article
%A Hatice Inankil
%A Sait Halıcıoglu
%A Abdullah Harmanci
%T A generalization of supplemented modules
%J Algebra and discrete mathematics
%D 2011
%P 59-74
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_11_1_a4/
%G en
%F ADM_2011_11_1_a4
Hatice Inankil; Sait Halıcıoglu; Abdullah Harmanci. A generalization of supplemented modules. Algebra and discrete mathematics, Tome 11 (2011) no. 1, pp. 59-74. http://geodesic.mathdoc.fr/item/ADM_2011_11_1_a4/

[1] R. Alizade and E. Buyukasik, “Extensions of weakly supplemented modules”, Math. Scand., 103:2 (2008), 161–168 | MR | Zbl

[2] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1974 | MR

[3] U. Acar and A. Harmanci, “Principally Supplemented Modules”, Albanian J. Math., 4:3 (2010), 74–78 | MR

[4] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting modules, Brikhäuser-Basel, 2006 | MR

[5] J. L. Garcia, “Properties of direct summand of modules”, Comm. Algebra, 17 (1989), 73–92 | DOI | MR | Zbl

[6] A. Harmanci, D. Keskin and P. F. Smith, “On $\oplus$-Supplemented Modules”, Acta Math. Hungar., 83:1/2 (1999), 161–169 | DOI | MR | Zbl

[7] C. Lomp, “Regular and Biregular Module Algebras”, Arab. J. Sci. and Eng., 33 (2008), 351–363 | MR | Zbl

[8] S. Mohamed and B. J. Müller, Continuous and discrete modules, Cambridge University Press, 1990 | MR

[9] M. A. Kamal and A. Yousef, “On Principally Lifting Modules”, Int. Electron. J. Algebra, 2 (2007), 127–137 | MR | Zbl

[10] M. T. Kosan, “$\delta$-lifting and $\delta$-supplemented modules”, Algebra Colloq., 14:1 (2007), 53–60 | MR | Zbl

[11] A. C. Ozcan, A. Harmanci and P. F. Smith, “Duo Modules”, Glasgow Math. J., 48:3 (2006), 533–545 | DOI | MR

[12] H. Inankil, S. Halicioglu and A. Harmanci, “On a Class of Lifting Modules”, Vietnam J. Math., 38:2 (2010), 189–201 | MR | Zbl

[13] W. K. Nicholson, “Semiregular modules and rings”, Canadian Math. J., 28:5 (1976), 1105–1120 | DOI | MR | Zbl

[14] R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, Reading, 1991 | MR | Zbl

[15] R. Wisbauer, Modules and Algebras: Bi-module Structures and Group actions on Algebras, Pitman Monographs and Surveys in Pure and Applied Mathematics, 81, 1996 | MR | Zbl

[16] Y. Zhou, “Generalizations of Perfect, Semiperfect and Semiregular Rings”, Algebra Colloq., 7:3 (2000), 305–318 | DOI | MR | Zbl