On partial skew Armendariz rings
Algebra and discrete mathematics, Tome 11 (2011) no. 1, pp. 23-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider rings $R$ with a partial action $\alpha$ of an infinite cyclic group $G$ on $R$. We introduce the concept of partial skew Armendariz rings and partial $\alpha$-rigid rings. We show that partial $\alpha$-rigid rings are partial skew Armendariz rings and we give necessary and sufficient conditions for $R$ to be a partial skew Armendariz ring. We study the transfer of Baer property, a.c.c. on right annhilators property, right p.p. property and right zip property between $R$ and $R[x;\alpha]$. We also show that $R[x;\alpha]$ and $R\langle x;\alpha\rangle$ are not necessarily associative rings when $R$ satisfies the concepts mentioned above.
Keywords: Armendariz rings, Baer rings and P.P. rings.
Mots-clés : partial actions
@article{ADM_2011_11_1_a2,
     author = {Wagner Cortes},
     title = {On partial skew {Armendariz} rings},
     journal = {Algebra and discrete mathematics},
     pages = {23--45},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_11_1_a2/}
}
TY  - JOUR
AU  - Wagner Cortes
TI  - On partial skew Armendariz rings
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 23
EP  - 45
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_11_1_a2/
LA  - en
ID  - ADM_2011_11_1_a2
ER  - 
%0 Journal Article
%A Wagner Cortes
%T On partial skew Armendariz rings
%J Algebra and discrete mathematics
%D 2011
%P 23-45
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_11_1_a2/
%G en
%F ADM_2011_11_1_a2
Wagner Cortes. On partial skew Armendariz rings. Algebra and discrete mathematics, Tome 11 (2011) no. 1, pp. 23-45. http://geodesic.mathdoc.fr/item/ADM_2011_11_1_a2/

[1] D. D. Anderson and V. Camillo, “Armendariz rings and gaussian rings”, Comm. in Algebra, 26 (1998), 2265–2272 | DOI | MR | Zbl

[2] E. P. Armendariz, “A note on extensions of Baer and p.p-rings”, J. of Australian Math. Society, 18 (1994), 470–473 | DOI | MR

[3] J.A. Beachy, W.D. Blair, “Rings whose faithful left ideals are cofaithful”, Pacific J. Math., 58 (1975), 1–13 | DOI | MR | Zbl

[4] G. F. BirkenMeier, J. Y. Kim and J. K. Park, “A sheaf representation of quasi-Baer Rings”, J. Pure and Appl. Algebra, 146 (2000), 209–223 | DOI | MR | Zbl

[5] G. F. BirkenMeier, “Principally quasi-Baer rings”, Comm. in algebra, 29(2) (2001), 639–660 | DOI | MR | Zbl

[6] F. Cedo, “Zip rings and Mal'cev domains”, Comm. in algebra, 19 (1991), 1983–1991 | DOI | MR | Zbl

[7] S.A. Chase, “Generalization of triangular matrices”, Nagoya Math. J., 18 (1961), 13–25 | MR | Zbl

[8] A.W. Chatters, W. Xue, “On right duo p.p.-rings”, Glasglow Math. J., 32 (1990), 221–225 | DOI | MR | Zbl

[9] S. Chhawchharia, M. B. Rege, “Armendariz rings”, Proceeding Japan Acad. Serie A Math Sci., 73 (1997), 14–17 | DOI | MR | Zbl

[10] W.E. Clark, “Twisted Matrix units in semigroup algebras”, Duke Math. J., 34 (1967), 417–423 | DOI | MR | Zbl

[11] W. Cortes, “Skew Armendariz rings and annihilator ideals of skew polynomial rings”, Contemporary of Mathematics, 376 (2005), 248–259 | MR

[12] W. Cortes, “Skew Polynomial Extensions over Zip Rings”, International Journal of Mathematics and Mathematical Sciences, 2008 (2008), 496720, 9 pp. | DOI | MR

[13] W. Cortes and M. Ferrero, “Partial skew Polynomial rings: Prime and Maximal Ideals”, Comm. in Algebra, 35 (2007), 1183–1199 | DOI | MR | Zbl

[14] W. Cortes, M. Ferrero and H. Marubayashi, “Partial Skew Polynomial Rings and Goldie Rings”, Comm. in Algebra, 36 (2008), 4284–4295 | DOI | MR | Zbl

[15] M. Dokuchaev, R. Exel, “Associativity of crossed products by partial actions, enveloping actions and partial representations”, Trans. of Amer. Math. Society, 357:5 (2005), 1931–1952 | DOI | MR | Zbl

[16] M. Dokuchaev, A. Rio, and J.J. Simon, “Globalizations of partial actions on non-unital rings”, Proc. Am. Math. Soc., 135:2 (2007), 343–352 | DOI | MR | Zbl

[17] M. Dokuchaev, M. Ferrero, A. Paques, “Partial actions and Galois theory”, J. of Pure and Appl. algebra, 208 (2007), 77–87 | DOI | MR | Zbl

[18] C. Faith, “Annihilator ideals, associated primes and Kasch-McCoy commutative rings”, Comm. in Algebra, 19 (1991), 1967–1982 | MR

[19] C. Faith, “Rings with zero intersection property on annihilators: zip rings”, Publ. Mat., 33 (1989), 329–332 | MR

[20] M. Ferrero and J. Lazzarin, “Partial actions and skew group rings”, J. of Algebra, 319 (2008), 5247–5264 | DOI | MR | Zbl

[21] M. Ferrero, “Partial actions of groups on semiprime rings”, Groups, Rings and Group Rings, Lecture Notes in Pure and Appl. Math., 248, Chapman and Hall/CRC, 2006, 155–162 | DOI | MR | Zbl

[22] M. Ferrero, “Closed submodules of centred bimodules over semiprime rings”, Nova J. Math. Game Theory and Alg., 5 (1996), 309–345 | MR | Zbl

[23] N.J. Groenewald, “A Note on Extensions of Baer and p.p.-rings”, Publication de L'Institut Mathematique, 34(48) (1983), 71–72 | MR | Zbl

[24] E. Hashemi, A.Moussavi, “On $(\alpha,\delta)$-skew Armendariz rings”, J. Korean Math. Soc., 42:2 (2005), 353–363 | DOI | MR | Zbl

[25] C.Y. Hong, N.K Kim, T.K. Kwak and Y. Lee, “Extensions of zip rings”, J. Pure and Appl. Algebra, 195 (2005), 231–242 | DOI | MR | Zbl

[26] Y. Hirano, “On Annihilators ideals of a polynomial ring over a noncommutative ring”, J. Pure and Appl. Algebra, 168 (2002), 45–52 | DOI | MR | Zbl

[27] C. Y. Hong, N.K. Kim and T. K. Kwak, “On skew Armendariz Rings”, Comm. in Algebra, 31 (2003), 103–122 | DOI | MR | Zbl

[28] C. Y. Hong, N. K. Kim, T. K. Kwak, “Ore extension of Baer and p.p.-rings”, J. Pure Appl. Algebra, 151 (2000), 215–226 | DOI | MR | Zbl

[29] I. Kaplanski, Ring of operators mathematics, Lectures Notes Series, Benjamin, New York, 1965

[30] N. K. Kim and Y. Lee, “Armendariz rings and reduced rings”, J. of Algebra, 223 (2000), 477–488 | DOI | MR | Zbl

[31] T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mat., 189, Springer-Verlag, Berlin, Heldeberg, New York, 1998 | MR | Zbl

[32] J. G. Lopes, “On Strongly Associative Group Algebras”, Comm. in Algebra, 36 (2008), 478–493 | DOI | MR

[33] N. H. McCoy, “Remarks on divisors of zero”, American Math. Monthly, 49 (1942), 286–295 | DOI | MR | Zbl

[34] D. S. Passman, A course in ring theory, Wadsworth and Brooks, Pacific Grove, 1991 | MR | Zbl

[35] D. S. Passman, The Algebraic Structure of Group Rings, Robert E. Krieger Publishing Co., Melbourne, FL, 1985, reprint of the 1977 original | MR

[36] P. Pollingher and A. Zaks, “On Baer and quasi-Baer rings”, Duke Math. Journal, 37 (1970), 127–138 | DOI | MR | Zbl

[37] A. Smoktunowicz, Y. Lee and C. Huh, “Armendariz rings and semicommutative rings”, Comm. in Algebra, 30 (2002), 751–761 | DOI | MR | Zbl

[38] B. Stenström, Rings of Quotients, Springer-Verlag, Berlin–Heidelberg–New York, 1975 | MR

[39] J.M. Zelmavowitz, “The finite intersection property on annihilator right ideals”, Proc. Amer. Math. Soc., 57 (1976), 213–216 | DOI | MR