On the prime spectrum of top modules
Algebra and discrete mathematics, Tome 11 (2011) no. 1, pp. 1-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate some properties of top modules and consider some conditions under which the spectrum of a top module is a spectral space.
Keywords: irreducible space, Noetherian space, spectral space.
Mots-clés : top modules
@article{ADM_2011_11_1_a0,
     author = {H. Ansari-Toroghy and D. Hassanzadeh-Lelekaami},
     title = {On the prime spectrum of top modules},
     journal = {Algebra and discrete mathematics},
     pages = {1--16},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_11_1_a0/}
}
TY  - JOUR
AU  - H. Ansari-Toroghy
AU  - D. Hassanzadeh-Lelekaami
TI  - On the prime spectrum of top modules
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 1
EP  - 16
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_11_1_a0/
LA  - en
ID  - ADM_2011_11_1_a0
ER  - 
%0 Journal Article
%A H. Ansari-Toroghy
%A D. Hassanzadeh-Lelekaami
%T On the prime spectrum of top modules
%J Algebra and discrete mathematics
%D 2011
%P 1-16
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_11_1_a0/
%G en
%F ADM_2011_11_1_a0
H. Ansari-Toroghy; D. Hassanzadeh-Lelekaami. On the prime spectrum of top modules. Algebra and discrete mathematics, Tome 11 (2011) no. 1, pp. 1-16. http://geodesic.mathdoc.fr/item/ADM_2011_11_1_a0/

[1] S. Abu-Saymeh, “On dimensions of finitely generated modules”, Comm. Algebra, 23:3 (1995), 1131–1144 | DOI | MR | Zbl

[2] F. W. Anderson and K. R. Fuller, Rings and categories of modules, Graduate Texts in Math., 13, Springer-Verlag, New York, 1992 | DOI | MR | Zbl

[3] S. Ebrahimi Atani, “Strongly irreducible submodules”, Bull. Korean Math. Soc., 42:1 (2005), 121–131 | DOI | MR | Zbl

[4] M.F. Atiyah and I.G. Macdonald, Introduction to commutative algebra, Addison-Wesley, 1969 | MR | Zbl

[5] A. Azizi, “Weak multiplication modules”, Czechoslovak Math. J., 53:128 (2003), 529–534 | DOI | MR | Zbl

[6] A. Barnard, “Multiplication modules”, J. Algebra, 71:1 (1981), 174–178 | DOI | MR | Zbl

[7] M. Behboodi, “A generalization of the classical krull dimension for modules”, J. Algebra, 305 (2006), 1128–1148 | DOI | MR | Zbl

[8] M. Behboodi and M. R. Haddadi, “Classical Zariski topology of modules and spectral spaces I”, Int. Electron. J. Algebra, 4 (2008), 104–130 | MR | Zbl

[9] M. Behboodi and M. R. Haddadi, “Classical Zariski topology of modules and spectral spaces II”, Int. Electron. J. Algebra, 4 (2008), 131–148 | MR | Zbl

[10] N. Bourbaki, Commutative algebra, chap. 1–7, Hermann, Paris, 1972 | MR

[11] F. Çallialp and Ü. Tekir, “On unions of prime submodules”, Southeast Asian Bull. Math., 28 (2004), 213–218 | MR

[12] Z.A. El-Bast and P.F. Smith, “Multiplication modules”, Comm. Algebra, 16:4 (1988), 755–779 | DOI | MR | Zbl

[13] M. Hochster, “Prime ideal structure in commutative rings”, Trans. Amer. Math. Soc., 142 (1969), 43–60 | DOI | MR | Zbl

[14] Chin-Pi Lu, “Prime submodules of modules”, Comment. Math. Univ. St. Pauli, 33:1 (1984), 61–69 | MR | Zbl

[15] Chin-Pi Lu, “M-radicals of submodules in modules”, Math. Japonica, 34:2 (1989), 211–219 | MR | Zbl

[16] Chin-Pi Lu, “Spectra of modules”, Comm. Algebra, 23:10 (1995), 3741–3752 | DOI | MR | Zbl

[17] Chin-Pi Lu, “The Zariski topology on the prime spectrum of a module”, Houston J. Math., 25:3 (1999), 417–432 | MR | Zbl

[18] Chin-Pi Lu, “Saturations of submodules”, Comm. Algebra, 31:6 (2003), 2655–2673 | DOI | MR | Zbl

[19] Chin-Pi Lu, “A module whose prime spectrum has the surjective natural map”, Houston J. Math., 33:1 (2007), 125–143 | MR | Zbl

[20] R.L. McCasland, M.E. Moore, and P.F. Smith, “On the spectrum of a module over a commutative ring”, Comm. Algebra, 25:1 (1997), 79–103 | DOI | MR | Zbl

[21] J. R. Munkres, Topology, second ed., Prentice Hall, New Jersey, 1999

[22] W. Stephenson, “Modules whose lattice of submodules is distributive”, J. Lond. Math. Soc. (2), 28:2 (1974), 291–310 | DOI | MR | Zbl

[23] P. Vamos, “The decomposition of finitely generated modules and fractionally self-injective rings”, J. Lond. Math. Soc. (2), 16:2 (1977), 209–220 | DOI | MR | Zbl