Thin systems of generators of groups
Algebra and discrete mathematics, Tome 9 (2010) no. 2, pp. 108-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset $T$ of a group $G$ with the identity $e$ is called $k$-thin $(k\in{\mathbb N})$ if $|A\cap gA|\leqslant k$, $|A\cap Ag|\leqslant k$ for every $g\in G$, $g\ne e$. We show that every infinite group $G$ can be generated by some 2-thin subset. Moreover, if $G$ is either Abelian or a torsion group without elements of order 2, then there exists a 1-thin system of generators of $G$. For every infinite group $G$, there exist a 2-thin subset $X$ such that $G=XX^{-1}\cup X^{-1}X$, and a 4-thin subset $Y$ such that $G=YY^{-1}$.
Keywords: small, $P$-small, $k$-thin subsets of groups.
@article{ADM_2010_9_2_a7,
     author = {Ievgen Lutsenko},
     title = {Thin systems of generators of groups},
     journal = {Algebra and discrete mathematics},
     pages = {108--114},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2010_9_2_a7/}
}
TY  - JOUR
AU  - Ievgen Lutsenko
TI  - Thin systems of generators of groups
JO  - Algebra and discrete mathematics
PY  - 2010
SP  - 108
EP  - 114
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2010_9_2_a7/
LA  - en
ID  - ADM_2010_9_2_a7
ER  - 
%0 Journal Article
%A Ievgen Lutsenko
%T Thin systems of generators of groups
%J Algebra and discrete mathematics
%D 2010
%P 108-114
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2010_9_2_a7/
%G en
%F ADM_2010_9_2_a7
Ievgen Lutsenko. Thin systems of generators of groups. Algebra and discrete mathematics, Tome 9 (2010) no. 2, pp. 108-114. http://geodesic.mathdoc.fr/item/ADM_2010_9_2_a7/