A generalization of groups with many almost normal subgroups
Algebra and discrete mathematics, Tome 9 (2010) no. 1, pp. 79-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $H$ of a group $G$ is called almost normal in $G$ if it has finitely many conjugates in $G$. A classic result of B. H. Neumann informs us that $|G:\mathbf{Z}(G)|$ is finite if and only if each $H$ is almost normal in $G$. Starting from this result, we investigate the structure of a group in which each non-finitely generated subgroup satisfies a property, which is weaker to be almost normal.
Keywords: Dietzmann classes; anti-$\mathfrak{X}C$-groups; groups with $\mathfrak{X}$-classes of conjugate subgroups; Chernikov groups.
@article{ADM_2010_9_1_a6,
     author = {Francesco G. Russo},
     title = {A generalization of groups with many almost normal subgroups},
     journal = {Algebra and discrete mathematics},
     pages = {79--85},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2010_9_1_a6/}
}
TY  - JOUR
AU  - Francesco G. Russo
TI  - A generalization of groups with many almost normal subgroups
JO  - Algebra and discrete mathematics
PY  - 2010
SP  - 79
EP  - 85
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2010_9_1_a6/
LA  - en
ID  - ADM_2010_9_1_a6
ER  - 
%0 Journal Article
%A Francesco G. Russo
%T A generalization of groups with many almost normal subgroups
%J Algebra and discrete mathematics
%D 2010
%P 79-85
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2010_9_1_a6/
%G en
%F ADM_2010_9_1_a6
Francesco G. Russo. A generalization of groups with many almost normal subgroups. Algebra and discrete mathematics, Tome 9 (2010) no. 1, pp. 79-85. http://geodesic.mathdoc.fr/item/ADM_2010_9_1_a6/