On the existence of complements in a~group to~some abelian normal subgroups
Algebra and discrete mathematics, Tome 10 (2010) no. 1, pp. 18-41
Voir la notice de l'article provenant de la source Math-Net.Ru
A complement to a proper normal subgroup $H$ of a group $G$ is a subgroup $K$ such that $G=HK$ and $H\cap K=\langle 1\rangle$. Equivalently it is said that $G$ splits over $H$. In this paper we develop a theory that we call hierarchy of centralizers to obtain sufficient conditions for a group to split over a certain abelian subgroup. We apply these results to obtain an entire group-theoretical wide extension of an important result due to D. J. S. Robinson formerly shown by cohomological methods.
Keywords:
splitting theorem, hierarchy of centralizers, hyperfinite group, socular series, section rank, $0$-rank.
Mots-clés : Complement, socle of a group
Mots-clés : Complement, socle of a group
@article{ADM_2010_10_1_a3,
author = {Martyn R. Dixon and Leonid A. Kurdachenko and Javier Otal},
title = {On the existence of complements in a~group to~some abelian normal subgroups},
journal = {Algebra and discrete mathematics},
pages = {18--41},
publisher = {mathdoc},
volume = {10},
number = {1},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2010_10_1_a3/}
}
TY - JOUR AU - Martyn R. Dixon AU - Leonid A. Kurdachenko AU - Javier Otal TI - On the existence of complements in a~group to~some abelian normal subgroups JO - Algebra and discrete mathematics PY - 2010 SP - 18 EP - 41 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2010_10_1_a3/ LA - en ID - ADM_2010_10_1_a3 ER -
%0 Journal Article %A Martyn R. Dixon %A Leonid A. Kurdachenko %A Javier Otal %T On the existence of complements in a~group to~some abelian normal subgroups %J Algebra and discrete mathematics %D 2010 %P 18-41 %V 10 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2010_10_1_a3/ %G en %F ADM_2010_10_1_a3
Martyn R. Dixon; Leonid A. Kurdachenko; Javier Otal. On the existence of complements in a~group to~some abelian normal subgroups. Algebra and discrete mathematics, Tome 10 (2010) no. 1, pp. 18-41. http://geodesic.mathdoc.fr/item/ADM_2010_10_1_a3/