Partitions of groups and matroids into independent subsets
Algebra and discrete mathematics, Tome 10 (2010) no. 1, pp. 1-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

Can the set $\mathbb R\setminus\{0\}$ be covered by countably many linearly (algebraically) independent subsets over the field $\mathbb Q$? We use a matroid approach to show that an answer is “Yes” under the Continuum Hypothesis, and “No” under its negation.
Keywords: matroid, independent subset.
Mots-clés : partition
@article{ADM_2010_10_1_a1,
     author = {Taras Banakh and Igor Protasov},
     title = {Partitions of groups and matroids into independent subsets},
     journal = {Algebra and discrete mathematics},
     pages = {1--7},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2010_10_1_a1/}
}
TY  - JOUR
AU  - Taras Banakh
AU  - Igor Protasov
TI  - Partitions of groups and matroids into independent subsets
JO  - Algebra and discrete mathematics
PY  - 2010
SP  - 1
EP  - 7
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2010_10_1_a1/
LA  - en
ID  - ADM_2010_10_1_a1
ER  - 
%0 Journal Article
%A Taras Banakh
%A Igor Protasov
%T Partitions of groups and matroids into independent subsets
%J Algebra and discrete mathematics
%D 2010
%P 1-7
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2010_10_1_a1/
%G en
%F ADM_2010_10_1_a1
Taras Banakh; Igor Protasov. Partitions of groups and matroids into independent subsets. Algebra and discrete mathematics, Tome 10 (2010) no. 1, pp. 1-7. http://geodesic.mathdoc.fr/item/ADM_2010_10_1_a1/