On Galois groups of prime degree polynomials with complex roots
Algebra and discrete mathematics, no. 2 (2009), pp. 99-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f$ be an irreducible polynomial of prime degree $p\geq 5$ over $\mathbb{Q}$, with precisely $k$ pairs of complex roots. Using a result of Jens Höchsmann (1999), we show that if $p\geq 4k+1$ then $\rm{Gal}(f/\mathbb{Q})$ is isomorphic to $A_{p}$ or $S_{p}$. This improves the algorithm for computing the Galois group of an irreducible polynomial of prime degree, introduced by A. Bialostocki and T. Shaska. If such a polynomial $f$ is solvable by radicals then its Galois group is a Frobenius group of degree p. Conversely, any Frobenius group of degree p and of even order, can be realized as the Galois group of an irreducible polynomial of degree $p$ over $\mathbb{Q}$ having complex roots.
@article{ADM_2009_2_a7,
     author = {Oz Ben-Shimol},
     title = {On {Galois} groups of prime degree polynomials with complex roots},
     journal = {Algebra and discrete mathematics},
     pages = {99--107},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2009_2_a7/}
}
TY  - JOUR
AU  - Oz Ben-Shimol
TI  - On Galois groups of prime degree polynomials with complex roots
JO  - Algebra and discrete mathematics
PY  - 2009
SP  - 99
EP  - 107
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2009_2_a7/
LA  - en
ID  - ADM_2009_2_a7
ER  - 
%0 Journal Article
%A Oz Ben-Shimol
%T On Galois groups of prime degree polynomials with complex roots
%J Algebra and discrete mathematics
%D 2009
%P 99-107
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2009_2_a7/
%G en
%F ADM_2009_2_a7
Oz Ben-Shimol. On Galois groups of prime degree polynomials with complex roots. Algebra and discrete mathematics, no. 2 (2009), pp. 99-107. http://geodesic.mathdoc.fr/item/ADM_2009_2_a7/