On modules over group rings of locally soluble groups for a~ring of $p$-adic integers
Algebra and discrete mathematics, no. 1 (2009), pp. 32-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author studies the ${\bf Z_{p^{\infty}}}G$-module $A$ such that $\bf Z_{p^{\infty}}$ is a ring of $p$-adic integers, a group $G$ is locally soluble, the quotient module $A/C_{A}(G)$ is not Artinian $\bf Z_{p^{\infty}}$-module, and the system of all subgroups $H \leq G$ for which the quotient\linebreak modules $A/C_{A}(H)$ are not Artinian $\bf Z_{p^{\infty}}$-modules satisfies the minimal condition on subgroups. It is proved that the group $G$ under consideration is soluble and some its properties are obtained.
Keywords: Linear group, Artinian module, locally soluble group.
@article{ADM_2009_1_a4,
     author = {O. Yu. Dashkova},
     title = {On modules over group rings of locally soluble groups for a~ring of $p$-adic integers},
     journal = {Algebra and discrete mathematics},
     pages = {32--43},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2009_1_a4/}
}
TY  - JOUR
AU  - O. Yu. Dashkova
TI  - On modules over group rings of locally soluble groups for a~ring of $p$-adic integers
JO  - Algebra and discrete mathematics
PY  - 2009
SP  - 32
EP  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2009_1_a4/
LA  - en
ID  - ADM_2009_1_a4
ER  - 
%0 Journal Article
%A O. Yu. Dashkova
%T On modules over group rings of locally soluble groups for a~ring of $p$-adic integers
%J Algebra and discrete mathematics
%D 2009
%P 32-43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2009_1_a4/
%G en
%F ADM_2009_1_a4
O. Yu. Dashkova. On modules over group rings of locally soluble groups for a~ring of $p$-adic integers. Algebra and discrete mathematics, no. 1 (2009), pp. 32-43. http://geodesic.mathdoc.fr/item/ADM_2009_1_a4/