Random walks on finite groups converging after finite number of steps
Algebra and discrete mathematics, no. 2 (2008), pp. 123-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P$ be a probability on a finite group $G$, $P^{(n)}=P\ast\ldots\ast P$ ($n$ times) be an $n$-fold convolution of $P$. If $n\rightarrow\infty$, then under mild conditions $P^{(n)}$ converges to the uniform probability $U(g)=\frac 1{|G|}$ $(g\in G)$. We study the case when the sequence $P^{(n)}$ reaches its limit $U$ after finite number of steps: $P^{(k)}=P^{(k+1)}=\dots=U$ for some $k$. Let $\Omega(G)$ be a set of the probabilities satisfying to that condition. Obviously, $U\in\Omega(G)$. We prove that $\Omega(G)\neq U$ for “almost all” non-Abelian groups and describe the groups for which $\Omega(G)=U$. If $P\in \Omega(G)$, then $P^{(b)}=U$, where $b$ is the maximal degree of irreducible complex representations of the group $G$.
Keywords: random walks on groups, finite groups, group algebra.
@article{ADM_2008_2_a8,
     author = {A. L. Vyshnevetskiy and E. M. Zhmud'},
     title = {Random walks on finite groups converging after finite number of steps},
     journal = {Algebra and discrete mathematics},
     pages = {123--129},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2008_2_a8/}
}
TY  - JOUR
AU  - A. L. Vyshnevetskiy
AU  - E. M. Zhmud'
TI  - Random walks on finite groups converging after finite number of steps
JO  - Algebra and discrete mathematics
PY  - 2008
SP  - 123
EP  - 129
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2008_2_a8/
LA  - en
ID  - ADM_2008_2_a8
ER  - 
%0 Journal Article
%A A. L. Vyshnevetskiy
%A E. M. Zhmud'
%T Random walks on finite groups converging after finite number of steps
%J Algebra and discrete mathematics
%D 2008
%P 123-129
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2008_2_a8/
%G en
%F ADM_2008_2_a8
A. L. Vyshnevetskiy; E. M. Zhmud'. Random walks on finite groups converging after finite number of steps. Algebra and discrete mathematics, no. 2 (2008), pp. 123-129. http://geodesic.mathdoc.fr/item/ADM_2008_2_a8/