Balleans of bounded geometry and G-spaces
Algebra and discrete mathematics, no. 2 (2008), pp. 101-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

A ballean (or a coarse structure) is a set endowed with some family of subsets which are called the balls. The properties of the family of balls are postulated in such a way that a ballean can be considered as an asymptotical counterpart of a uniform topological space. We prove that every ballean of bounded geometry is coarsely equivalent to a ballean on some set $X$ determined by some group of permutations of $X$.
Keywords: ballean, coarse equivalence, G-space.
@article{ADM_2008_2_a6,
     author = {Igor V. Protasov},
     title = {Balleans of bounded geometry and {G-spaces}},
     journal = {Algebra and discrete mathematics},
     pages = {101--108},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2008_2_a6/}
}
TY  - JOUR
AU  - Igor V. Protasov
TI  - Balleans of bounded geometry and G-spaces
JO  - Algebra and discrete mathematics
PY  - 2008
SP  - 101
EP  - 108
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2008_2_a6/
LA  - en
ID  - ADM_2008_2_a6
ER  - 
%0 Journal Article
%A Igor V. Protasov
%T Balleans of bounded geometry and G-spaces
%J Algebra and discrete mathematics
%D 2008
%P 101-108
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2008_2_a6/
%G en
%F ADM_2008_2_a6
Igor V. Protasov. Balleans of bounded geometry and G-spaces. Algebra and discrete mathematics, no. 2 (2008), pp. 101-108. http://geodesic.mathdoc.fr/item/ADM_2008_2_a6/