On sum of a~nilpotent and an ideally finite algebras
Algebra and discrete mathematics, no. 3 (2007), pp. 38-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study associative algebras $R$ over arbitrary fields which can be decomposed into a sum $R=A+B$ of their subalgebras $A$ and $B$ such that $A^{2}=0$ and $B$ is ideally finite (is a sum of its finite dimensional ideals). We prove that $R$ has a locally nilpotent ideal $I$ such that $R/I$ is an extension of ideally finite algebra by a nilpotent algebra. Some properties of ideally finite algebras are also established.
Keywords: associative algebra, field, finite dimensional ideal, left annihilator.
Mots-clés : sum of subalgebras
@article{ADM_2007_3_a5,
     author = {Svitlana V. Bilun},
     title = {On sum of a~nilpotent and an ideally finite algebras},
     journal = {Algebra and discrete mathematics},
     pages = {38--45},
     publisher = {mathdoc},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2007_3_a5/}
}
TY  - JOUR
AU  - Svitlana V. Bilun
TI  - On sum of a~nilpotent and an ideally finite algebras
JO  - Algebra and discrete mathematics
PY  - 2007
SP  - 38
EP  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2007_3_a5/
LA  - en
ID  - ADM_2007_3_a5
ER  - 
%0 Journal Article
%A Svitlana V. Bilun
%T On sum of a~nilpotent and an ideally finite algebras
%J Algebra and discrete mathematics
%D 2007
%P 38-45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2007_3_a5/
%G en
%F ADM_2007_3_a5
Svitlana V. Bilun. On sum of a~nilpotent and an ideally finite algebras. Algebra and discrete mathematics, no. 3 (2007), pp. 38-45. http://geodesic.mathdoc.fr/item/ADM_2007_3_a5/