Commutative reduced
Algebra and discrete mathematics, no. 3 (2007), pp. 18-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

A ring $R$ is filial when for every $I$$J$, if $I$ is an ideal of $J$ and $J$ is an ideal of $R$ then $I$ is an ideal of $R$. Several characterizations and results on structure of commutative reduced filial rings are obtained.
Keywords: ideal, filial ring, reduced ring.
@article{ADM_2007_3_a3,
     author = {Ryszard R. Andruszkiewicz and Magdalena Sobolewska},
     title = {Commutative reduced},
     journal = {Algebra and discrete mathematics},
     pages = {18--26},
     publisher = {mathdoc},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2007_3_a3/}
}
TY  - JOUR
AU  - Ryszard R. Andruszkiewicz
AU  - Magdalena Sobolewska
TI  - Commutative reduced
JO  - Algebra and discrete mathematics
PY  - 2007
SP  - 18
EP  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2007_3_a3/
LA  - en
ID  - ADM_2007_3_a3
ER  - 
%0 Journal Article
%A Ryszard R. Andruszkiewicz
%A Magdalena Sobolewska
%T Commutative reduced
%J Algebra and discrete mathematics
%D 2007
%P 18-26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2007_3_a3/
%G en
%F ADM_2007_3_a3
Ryszard R. Andruszkiewicz; Magdalena Sobolewska. Commutative reduced. Algebra and discrete mathematics, no. 3 (2007), pp. 18-26. http://geodesic.mathdoc.fr/item/ADM_2007_3_a3/