Automorphisms of kaleidoscopical graphs
Algebra and discrete mathematics, no. 2 (2007), pp. 125-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

A regular connected graph $\Gamma$ of degree $s$ is called kaleidoscopical if there is a $(s+1)$-coloring of the set of its vertices such that every unit ball in $\Gamma$ has no distinct monochrome points. The kaleidoscopical graphs can be considered as a graph counterpart of the Hamming codes. We describe the groups of automorphisms of kaleidoscopical trees and Hamming graphs. We show also that every finitely generated group can be realized as the group of automorphisms of some kaleidoscopical graphs.
Keywords: kaleidoscopical graph, Hamming pair, kaleidoscopical tree.
@article{ADM_2007_2_a11,
     author = {I. V. Protasov and K. D. Protasova},
     title = {Automorphisms of kaleidoscopical graphs},
     journal = {Algebra and discrete mathematics},
     pages = {125--129},
     publisher = {mathdoc},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2007_2_a11/}
}
TY  - JOUR
AU  - I. V. Protasov
AU  - K. D. Protasova
TI  - Automorphisms of kaleidoscopical graphs
JO  - Algebra and discrete mathematics
PY  - 2007
SP  - 125
EP  - 129
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2007_2_a11/
LA  - en
ID  - ADM_2007_2_a11
ER  - 
%0 Journal Article
%A I. V. Protasov
%A K. D. Protasova
%T Automorphisms of kaleidoscopical graphs
%J Algebra and discrete mathematics
%D 2007
%P 125-129
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2007_2_a11/
%G en
%F ADM_2007_2_a11
I. V. Protasov; K. D. Protasova. Automorphisms of kaleidoscopical graphs. Algebra and discrete mathematics, no. 2 (2007), pp. 125-129. http://geodesic.mathdoc.fr/item/ADM_2007_2_a11/