On closed rational functions in several variables
Algebra and discrete mathematics, no. 2 (2007), pp. 115-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb{K}=\bar{\mathbb K}$ be a field of characteristic zero. An element $\varphi\in\mathbb K(x_1,\dots,x_n)$ is called a closed rational function if the subfield $\mathbb K(\varphi)$ is algebraically closed in the field $\mathbb K(x_1,\dots,x_n)$. We prove that a rational function $\varphi=f/g$ is closed if $f$ and $g$ are algebraically independent and at least one of them is irreducible. We also show that a rational function $\varphi=f/g$ is closed if and only if the pencil $\alpha f+\beta g$ contains only finitely many reducible hypersurfaces. Some sufficient conditions for a polynomial to be irreducible are given.
Keywords: closed rational functions, irreducible polynomials.
@article{ADM_2007_2_a10,
     author = {Anatoliy P. Petravchuk and Oleksandr G. Iena},
     title = {On closed rational functions in several variables},
     journal = {Algebra and discrete mathematics},
     pages = {115--124},
     publisher = {mathdoc},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2007_2_a10/}
}
TY  - JOUR
AU  - Anatoliy P. Petravchuk
AU  - Oleksandr G. Iena
TI  - On closed rational functions in several variables
JO  - Algebra and discrete mathematics
PY  - 2007
SP  - 115
EP  - 124
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2007_2_a10/
LA  - en
ID  - ADM_2007_2_a10
ER  - 
%0 Journal Article
%A Anatoliy P. Petravchuk
%A Oleksandr G. Iena
%T On closed rational functions in several variables
%J Algebra and discrete mathematics
%D 2007
%P 115-124
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2007_2_a10/
%G en
%F ADM_2007_2_a10
Anatoliy P. Petravchuk; Oleksandr G. Iena. On closed rational functions in several variables. Algebra and discrete mathematics, no. 2 (2007), pp. 115-124. http://geodesic.mathdoc.fr/item/ADM_2007_2_a10/