On $H$-closed topological semigroups and semilattices
Algebra and discrete mathematics, no. 1 (2007), pp. 13-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we show that if $S$ is an $H$-closed topological semigroup and $e$ is an idempotent of $S$, then $eSe$ is an $H$-closed topological semigroup. We give sufficient conditions on a linearly ordered topological semilattice to be $H$-closed. Also we prove that any $H$-closed locally compact topological semilattice and any $H$-closed topological weakly $U$-semilattice contain minimal idempotents. An example of a countably compact topological semilattice whose topological space is $H$-closed is constructed.
Keywords: Topological semigroup, $H$-closed topological semigroup, absolutely $H$-closed topological semigroup, topological semilattice, linearly ordered semilattice, $H$-closed topological semilattice, absolutely $H$-closed topological semilattice.
@article{ADM_2007_1_a1,
     author = {Ivan Chuchman and Oleg Gutik},
     title = {On $H$-closed topological semigroups and semilattices},
     journal = {Algebra and discrete mathematics},
     pages = {13--23},
     publisher = {mathdoc},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2007_1_a1/}
}
TY  - JOUR
AU  - Ivan Chuchman
AU  - Oleg Gutik
TI  - On $H$-closed topological semigroups and semilattices
JO  - Algebra and discrete mathematics
PY  - 2007
SP  - 13
EP  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2007_1_a1/
LA  - en
ID  - ADM_2007_1_a1
ER  - 
%0 Journal Article
%A Ivan Chuchman
%A Oleg Gutik
%T On $H$-closed topological semigroups and semilattices
%J Algebra and discrete mathematics
%D 2007
%P 13-23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2007_1_a1/
%G en
%F ADM_2007_1_a1
Ivan Chuchman; Oleg Gutik. On $H$-closed topological semigroups and semilattices. Algebra and discrete mathematics, no. 1 (2007), pp. 13-23. http://geodesic.mathdoc.fr/item/ADM_2007_1_a1/