On groups with the minimal condition for non-invariant decomposable abelian subgroups
Algebra and discrete mathematics, no. 4 (2006), pp. 57-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

The infinite groups, in which there is no any infinite descending chain of non-invariant decomposable abelian subgroups ($md$-groups) are studied. Infinite groups with the minimal condition for non-invariant abelian subgroups, infinite groups with the condition of normality for all decomposable abelian subgroups and others belong to the class of $md$-groups. The complete description of infinite locally finite and locally soluble non-periodic $md$-groups is given, the connection of the class of $md$-groups with other classes of groups are investigated.
Keywords: subgroup, order of the group, involution, locally finite group, non-periodic group, decomposable abelian subgroup, condition of normality.
Mots-clés : group, minimal condition
@article{ADM_2006_4_a3,
     author = {F. N. Lyman and M. G. Drushlyak},
     title = {On groups with the minimal condition for non-invariant decomposable abelian subgroups},
     journal = {Algebra and discrete mathematics},
     pages = {57--66},
     publisher = {mathdoc},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2006_4_a3/}
}
TY  - JOUR
AU  - F. N. Lyman
AU  - M. G. Drushlyak
TI  - On groups with the minimal condition for non-invariant decomposable abelian subgroups
JO  - Algebra and discrete mathematics
PY  - 2006
SP  - 57
EP  - 66
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2006_4_a3/
LA  - en
ID  - ADM_2006_4_a3
ER  - 
%0 Journal Article
%A F. N. Lyman
%A M. G. Drushlyak
%T On groups with the minimal condition for non-invariant decomposable abelian subgroups
%J Algebra and discrete mathematics
%D 2006
%P 57-66
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2006_4_a3/
%G en
%F ADM_2006_4_a3
F. N. Lyman; M. G. Drushlyak. On groups with the minimal condition for non-invariant decomposable abelian subgroups. Algebra and discrete mathematics, no. 4 (2006), pp. 57-66. http://geodesic.mathdoc.fr/item/ADM_2006_4_a3/