On the Amitsur property of radicals
Algebra and discrete mathematics, no. 3 (2006), pp. 92-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Amitsur property of a radical says that the radical of a polynomial ring is again a polynomial ring. A hereditary radical $\gamma$ has the Amitsur property if and only if its semisimple class is polynomially extensible and satisfies: $f(x)\in\gamma(A[x])$ implies $f(0)\in\gamma(A[x])$. Applying this criterion, it is proved that the generalized nil radical has the Amitsur property. In this way the Amitsur property of a not necessarily hereditary normal radical can be checked.
Keywords: Amitsur property, hereditary, normal and generalized nil radical.
@article{ADM_2006_3_a7,
     author = {N. V. Loi and R. Wiegandt},
     title = {On the {Amitsur} property of radicals},
     journal = {Algebra and discrete mathematics},
     pages = {92--100},
     publisher = {mathdoc},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2006_3_a7/}
}
TY  - JOUR
AU  - N. V. Loi
AU  - R. Wiegandt
TI  - On the Amitsur property of radicals
JO  - Algebra and discrete mathematics
PY  - 2006
SP  - 92
EP  - 100
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2006_3_a7/
LA  - en
ID  - ADM_2006_3_a7
ER  - 
%0 Journal Article
%A N. V. Loi
%A R. Wiegandt
%T On the Amitsur property of radicals
%J Algebra and discrete mathematics
%D 2006
%P 92-100
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2006_3_a7/
%G en
%F ADM_2006_3_a7
N. V. Loi; R. Wiegandt. On the Amitsur property of radicals. Algebra and discrete mathematics, no. 3 (2006), pp. 92-100. http://geodesic.mathdoc.fr/item/ADM_2006_3_a7/