On fully wild categories of representations of posets
Algebra and discrete mathematics, no. 3 (2006), pp. 71-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

Assume that $I$ is a finite partially ordered set and $k$ is a field. We prove that if the category prin$(kI)$ of prinjective modules over the incidence $k$-algebra $kI$ of $I$ is fully $k$-wild then the category $fpr(I,k)$ of finite dimensional $k$-representations of $I$ is also fully $k$-wild. A key argument is a construction of fully faithful exact endofunctors of the category of finite dimensional $k\langle x,y\rangle$-modules, with the image contained in certain subcategories.
Keywords: representations of posets, wild, fully wild representation type, endofunctors of wild module category.
@article{ADM_2006_3_a6,
     author = {Stanis{\l}aw Kasjan},
     title = {On fully wild categories of representations of posets},
     journal = {Algebra and discrete mathematics},
     pages = {71--91},
     publisher = {mathdoc},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2006_3_a6/}
}
TY  - JOUR
AU  - Stanisław Kasjan
TI  - On fully wild categories of representations of posets
JO  - Algebra and discrete mathematics
PY  - 2006
SP  - 71
EP  - 91
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2006_3_a6/
LA  - en
ID  - ADM_2006_3_a6
ER  - 
%0 Journal Article
%A Stanisław Kasjan
%T On fully wild categories of representations of posets
%J Algebra and discrete mathematics
%D 2006
%P 71-91
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2006_3_a6/
%G en
%F ADM_2006_3_a6
Stanisław Kasjan. On fully wild categories of representations of posets. Algebra and discrete mathematics, no. 3 (2006), pp. 71-91. http://geodesic.mathdoc.fr/item/ADM_2006_3_a6/