On the dimension of Kirichenko space
Algebra and discrete mathematics, no. 2 (2006), pp. 87-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a notion of the Kirichenko space which is connected with the notion of Gorenstein matrix (see [2], ch. 14). Every element of Kirichenko space is an $n\times n$ matrix, whose elements are solutions of the equations $a_{i,j}+a_{j,\sigma (i)} =a_{i,\sigma(i)}$; $a_{1,i}=0$ for $i,j =1,\ldots, n$ determined by a permutation $\sigma$ which has no cycles of the length 1. We give a formula for the dimension of this space in terms of the cyclic type of $\sigma$.
Keywords: box, derived category, differential graded category.
@article{ADM_2006_2_a9,
     author = {Makar Plakhotnyk},
     title = {On the dimension of {Kirichenko} space},
     journal = {Algebra and discrete mathematics},
     pages = {87--126},
     publisher = {mathdoc},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2006_2_a9/}
}
TY  - JOUR
AU  - Makar Plakhotnyk
TI  - On the dimension of Kirichenko space
JO  - Algebra and discrete mathematics
PY  - 2006
SP  - 87
EP  - 126
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2006_2_a9/
LA  - en
ID  - ADM_2006_2_a9
ER  - 
%0 Journal Article
%A Makar Plakhotnyk
%T On the dimension of Kirichenko space
%J Algebra and discrete mathematics
%D 2006
%P 87-126
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2006_2_a9/
%G en
%F ADM_2006_2_a9
Makar Plakhotnyk. On the dimension of Kirichenko space. Algebra and discrete mathematics, no. 2 (2006), pp. 87-126. http://geodesic.mathdoc.fr/item/ADM_2006_2_a9/