A construction of dual box
Algebra and discrete mathematics, no. 2 (2006), pp. 77-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathtt{R}$ be a quasi-hereditary algebra, $\mathscr{F}(\Delta)$ and $\mathscr{F}(\nabla)$ its categories of good and cogood modules correspondingly. In [6] these categories were characterized as the categories of representations of some boxes $\mathscr{A}=\mathscr{A}_{\Delta}$ and $\mathscr{A}_{\nabla}$. These last are the box theory counterparts of Ringel duality [8]. We present an implicit construction of the box $\mathscr{B}$ such that $\mathscr{B}-\mathrm{mo}$ is equivalent to $\mathscr{F}(\nabla)$.
Keywords: box, derived category, differential graded category.
@article{ADM_2006_2_a8,
     author = {Serge Ovsienko},
     title = {A construction of dual box},
     journal = {Algebra and discrete mathematics},
     pages = {77--86},
     publisher = {mathdoc},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2006_2_a8/}
}
TY  - JOUR
AU  - Serge Ovsienko
TI  - A construction of dual box
JO  - Algebra and discrete mathematics
PY  - 2006
SP  - 77
EP  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2006_2_a8/
LA  - en
ID  - ADM_2006_2_a8
ER  - 
%0 Journal Article
%A Serge Ovsienko
%T A construction of dual box
%J Algebra and discrete mathematics
%D 2006
%P 77-86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2006_2_a8/
%G en
%F ADM_2006_2_a8
Serge Ovsienko. A construction of dual box. Algebra and discrete mathematics, no. 2 (2006), pp. 77-86. http://geodesic.mathdoc.fr/item/ADM_2006_2_a8/