Criterions of supersolubility of some finite factorizable groups
Algebra and discrete mathematics, no. 3 (2005), pp. 46-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$$B$ be subgroups of a group $G$ and $\emptyset\ne X\subseteq G$. A subgroup $A$ is said to be $X$-permutable with $B$ if for some $x\in X$ we have $AB^x=B^xA$ [1]. We obtain some new criterions for supersolubility of a finite group $G=AB$, where $A$ and $B$ are supersoluble groups. In particular, we prove that a finite group $G=AB$ is supersoluble provided $A$$B$ are supersolube subgroups of $G$ such that every primary cyclic subgroup of $A$ $X$-permutes with every Sylow subgroup of $B$ and if in return every primary cyclic subgroup of $B$ $X$-permutes with every Sylow subgroup of $A$ where $X=F(G)$ is the Fitting subgroup of $G$.
Keywords: finite group, supersoluble group, permutable subgroups, product of subgroups.
@article{ADM_2005_3_a3,
     author = {Helena V. Legchekova},
     title = {Criterions of supersolubility of some finite factorizable groups},
     journal = {Algebra and discrete mathematics},
     pages = {46--55},
     publisher = {mathdoc},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2005_3_a3/}
}
TY  - JOUR
AU  - Helena V. Legchekova
TI  - Criterions of supersolubility of some finite factorizable groups
JO  - Algebra and discrete mathematics
PY  - 2005
SP  - 46
EP  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2005_3_a3/
LA  - en
ID  - ADM_2005_3_a3
ER  - 
%0 Journal Article
%A Helena V. Legchekova
%T Criterions of supersolubility of some finite factorizable groups
%J Algebra and discrete mathematics
%D 2005
%P 46-55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2005_3_a3/
%G en
%F ADM_2005_3_a3
Helena V. Legchekova. Criterions of supersolubility of some finite factorizable groups. Algebra and discrete mathematics, no. 3 (2005), pp. 46-55. http://geodesic.mathdoc.fr/item/ADM_2005_3_a3/