Color-detectors of hypergraphs
Algebra and discrete mathematics, no. 1 (2005), pp. 84-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a set of cardinality $k$, $\mathcal{F}$ be a family of subsets of $X$. We say that a cardinal $\lambda,\lambda$, is a color-detector of the hypergraph $H=(X,\mathcal{F})$ if card $\chi(X)\leq \lambda$ for every coloring $\chi: X\rightarrow k$ such that card $\chi(F)\leq \lambda$ for every $F\in\mathcal{F}$. We show that the color-detectors of $H$ are tightly connected with the covering number $ cov(H)=\mathrm{cup}\{\alpha:\text{any }\alpha\text{points of }X\text{ are contained in some }F\in\mathcal F\}$. In some cases we determine all of the color-detectors of $H$ and their asymptotic counterparts. We put also some open questions.
Keywords: hypergraph, color-detector, covering number.
@article{ADM_2005_1_a7,
     author = {I. V. Protasov and O. I. Protasova},
     title = {Color-detectors of hypergraphs},
     journal = {Algebra and discrete mathematics},
     pages = {84--91},
     publisher = {mathdoc},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2005_1_a7/}
}
TY  - JOUR
AU  - I. V. Protasov
AU  - O. I. Protasova
TI  - Color-detectors of hypergraphs
JO  - Algebra and discrete mathematics
PY  - 2005
SP  - 84
EP  - 91
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2005_1_a7/
LA  - en
ID  - ADM_2005_1_a7
ER  - 
%0 Journal Article
%A I. V. Protasov
%A O. I. Protasova
%T Color-detectors of hypergraphs
%J Algebra and discrete mathematics
%D 2005
%P 84-91
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2005_1_a7/
%G en
%F ADM_2005_1_a7
I. V. Protasov; O. I. Protasova. Color-detectors of hypergraphs. Algebra and discrete mathematics, no. 1 (2005), pp. 84-91. http://geodesic.mathdoc.fr/item/ADM_2005_1_a7/