Miniversal deformations of chains of linear mappings
Algebra and discrete mathematics, no. 1 (2005), pp. 47-61
Voir la notice de l'article provenant de la source Math-Net.Ru
V. I. Arnold [Russian Math. Surveys, 26 (no. 2), 1971, pp. 29–43] gave a miniversal deformation of matrices of linear operators; that is, a simple canonical form, to which not only a given square matrix $A$, but also the family of all matrices close to $A$, can be reduced by similarity transformations smoothly depending on the entries of matrices. We study miniversal deformations of quiver representations and obtain a miniversal deformation of matrices of chains of linear mappings
$$
V_1\,\frac{\qquad}{\qquad}\,V_2\,\frac{\qquad}{\qquad}\,\cdots\,\frac{\qquad}{\qquad}\,V_t\,,
$$
where all $V_i$ are complex or real vector spaces and each line denotes $\longrightarrow$ or $\longleftarrow$.
Keywords:
Parametric matrices; Quivers; Miniversal deformations.
@article{ADM_2005_1_a4,
author = {T. N. Gaiduk and V. V. Sergeichuk and N. A. Zharko},
title = {Miniversal deformations of chains of linear mappings},
journal = {Algebra and discrete mathematics},
pages = {47--61},
publisher = {mathdoc},
number = {1},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2005_1_a4/}
}
T. N. Gaiduk; V. V. Sergeichuk; N. A. Zharko. Miniversal deformations of chains of linear mappings. Algebra and discrete mathematics, no. 1 (2005), pp. 47-61. http://geodesic.mathdoc.fr/item/ADM_2005_1_a4/