Miniversal deformations of chains of linear mappings
Algebra and discrete mathematics, no. 1 (2005), pp. 47-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

V. I. Arnold [Russian Math. Surveys, 26 (no. 2), 1971, pp. 29–43] gave a miniversal deformation of matrices of linear operators; that is, a simple canonical form, to which not only a given square matrix $A$, but also the family of all matrices close to $A$, can be reduced by similarity transformations smoothly depending on the entries of matrices. We study miniversal deformations of quiver representations and obtain a miniversal deformation of matrices of chains of linear mappings $$ V_1\,\frac{\qquad}{\qquad}\,V_2\,\frac{\qquad}{\qquad}\,\cdots\,\frac{\qquad}{\qquad}\,V_t\,, $$ where all $V_i$ are complex or real vector spaces and each line denotes $\longrightarrow$ or $\longleftarrow$.
Keywords: Parametric matrices; Quivers; Miniversal deformations.
@article{ADM_2005_1_a4,
     author = {T. N. Gaiduk and V. V. Sergeichuk and N. A. Zharko},
     title = {Miniversal deformations of chains of linear mappings},
     journal = {Algebra and discrete mathematics},
     pages = {47--61},
     publisher = {mathdoc},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2005_1_a4/}
}
TY  - JOUR
AU  - T. N. Gaiduk
AU  - V. V. Sergeichuk
AU  - N. A. Zharko
TI  - Miniversal deformations of chains of linear mappings
JO  - Algebra and discrete mathematics
PY  - 2005
SP  - 47
EP  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2005_1_a4/
LA  - en
ID  - ADM_2005_1_a4
ER  - 
%0 Journal Article
%A T. N. Gaiduk
%A V. V. Sergeichuk
%A N. A. Zharko
%T Miniversal deformations of chains of linear mappings
%J Algebra and discrete mathematics
%D 2005
%P 47-61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2005_1_a4/
%G en
%F ADM_2005_1_a4
T. N. Gaiduk; V. V. Sergeichuk; N. A. Zharko. Miniversal deformations of chains of linear mappings. Algebra and discrete mathematics, no. 1 (2005), pp. 47-61. http://geodesic.mathdoc.fr/item/ADM_2005_1_a4/