Correct classes of modules
Algebra and discrete mathematics, no. 4 (2004), pp. 106-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a ring $R$, call a class $\mathcal{C}$ of $R$-modules (pure-) mono-correct if for any $M,N\in\mathcal {C}$ the existence of (pure) monomorphisms $M\to N$ and $N\to M$ implies $M\simeq N$. Extending results and ideas of Rososhek from rings to modules, it is shown that, for an $R$-module $M$, the class $\sigma M$ of all $M$-subgenerated modules is mono-correct if and only if $M$ is semisimple, and the class of all weakly $M$-injective modules is mono-correct if and only if $M$ is locally noetherian. Applying this to the functor ring of $R$-Mod provides a new proof that $R$ is left pure semisimple if and only if $R$-Mod is pure-mono-correct. Furthermore, the class of pure-injective $R$-modules is always pure-mono-correct, and it is mono-correct if and only if $R$ is von Neumann regular. The dual notion epi-correctness is also considered and it is shown that a ring $R$ is left perfect if and only if the class of all flat $R$-modules is epi-correct. At the end some open problems are stated.
Keywords: Cantor-Bernstein Theorem, correct classes, homological classification of rings.
@article{ADM_2004_4_a7,
     author = {Robert Wisbauer},
     title = {Correct classes of modules},
     journal = {Algebra and discrete mathematics},
     pages = {106--118},
     publisher = {mathdoc},
     number = {4},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2004_4_a7/}
}
TY  - JOUR
AU  - Robert Wisbauer
TI  - Correct classes of modules
JO  - Algebra and discrete mathematics
PY  - 2004
SP  - 106
EP  - 118
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2004_4_a7/
LA  - en
ID  - ADM_2004_4_a7
ER  - 
%0 Journal Article
%A Robert Wisbauer
%T Correct classes of modules
%J Algebra and discrete mathematics
%D 2004
%P 106-118
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2004_4_a7/
%G en
%F ADM_2004_4_a7
Robert Wisbauer. Correct classes of modules. Algebra and discrete mathematics, no. 4 (2004), pp. 106-118. http://geodesic.mathdoc.fr/item/ADM_2004_4_a7/