Finite groups with a~system of generalized central elements
Algebra and discrete mathematics, no. 4 (2004), pp. 66-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be a normal subgroup of a finite group $G$. A number of authors have investigated the structure of $G$ under the assumption that all minimal or maximal subgroups in Sylow subgroups of $H$ are well-situated in $G$. A general approach to the results of that kind is proposed in this article. The author has found the conditions for $p$-elements of $H$ under which $G$-chief $p$-factors of $H$ are $\mathfrak{F}$-central in $G$.
Keywords: finite group
Mots-clés : $Qf$-central element, formation.
@article{ADM_2004_4_a5,
     author = {Olga Shemetkova},
     title = {Finite groups with a~system of generalized central elements},
     journal = {Algebra and discrete mathematics},
     pages = {66--78},
     publisher = {mathdoc},
     number = {4},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2004_4_a5/}
}
TY  - JOUR
AU  - Olga Shemetkova
TI  - Finite groups with a~system of generalized central elements
JO  - Algebra and discrete mathematics
PY  - 2004
SP  - 66
EP  - 78
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2004_4_a5/
LA  - en
ID  - ADM_2004_4_a5
ER  - 
%0 Journal Article
%A Olga Shemetkova
%T Finite groups with a~system of generalized central elements
%J Algebra and discrete mathematics
%D 2004
%P 66-78
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2004_4_a5/
%G en
%F ADM_2004_4_a5
Olga Shemetkova. Finite groups with a~system of generalized central elements. Algebra and discrete mathematics, no. 4 (2004), pp. 66-78. http://geodesic.mathdoc.fr/item/ADM_2004_4_a5/