Dimensions of finite type for representations of partially ordered sets
Algebra and discrete mathematics, no. 3 (2004), pp. 21-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the dimensions of finite type of representations of a partially ordered set, i.e. such that there is only finitely many isomorphism classes of representations of this dimension. We give a criterion for a dimension to be of finite type. We also characterize those dimensions of finite type, for which there is an indecomposable representation of this dimension, and show that there can be at most one indecomposable representation of any dimension of finite type. Moreover, if such a representation exists, it only has scalar endomorphisms. These results (Theorem 1.6, page 25) generalize those of [5,1,9].
Keywords: Representations of posets, finite type
Mots-clés : indecomposable representations.
@article{ADM_2004_3_a2,
     author = {Yuriy A. Drozd and Eugene A. Kubichka},
     title = {Dimensions of finite type for representations of partially ordered sets},
     journal = {Algebra and discrete mathematics},
     pages = {21--37},
     publisher = {mathdoc},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2004_3_a2/}
}
TY  - JOUR
AU  - Yuriy A. Drozd
AU  - Eugene A. Kubichka
TI  - Dimensions of finite type for representations of partially ordered sets
JO  - Algebra and discrete mathematics
PY  - 2004
SP  - 21
EP  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2004_3_a2/
LA  - en
ID  - ADM_2004_3_a2
ER  - 
%0 Journal Article
%A Yuriy A. Drozd
%A Eugene A. Kubichka
%T Dimensions of finite type for representations of partially ordered sets
%J Algebra and discrete mathematics
%D 2004
%P 21-37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2004_3_a2/
%G en
%F ADM_2004_3_a2
Yuriy A. Drozd; Eugene A. Kubichka. Dimensions of finite type for representations of partially ordered sets. Algebra and discrete mathematics, no. 3 (2004), pp. 21-37. http://geodesic.mathdoc.fr/item/ADM_2004_3_a2/