Derived tame and derived wild algebras
Algebra and discrete mathematics, no. 1 (2004), pp. 57-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that every finite dimensional algebra over an algebraically closed field is either derived tame or derived wild. We also prove that any deformation of a derived wild algebra is derived wild.
Keywords: derived categories, derived tame and derived wild algebras, deformations of algebras, matrix problems, representations of boxes.
@article{ADM_2004_1_a4,
     author = {Yuriy A. Drozd},
     title = {Derived tame and derived wild algebras},
     journal = {Algebra and discrete mathematics},
     pages = {57--74},
     year = {2004},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2004_1_a4/}
}
TY  - JOUR
AU  - Yuriy A. Drozd
TI  - Derived tame and derived wild algebras
JO  - Algebra and discrete mathematics
PY  - 2004
SP  - 57
EP  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ADM_2004_1_a4/
LA  - en
ID  - ADM_2004_1_a4
ER  - 
%0 Journal Article
%A Yuriy A. Drozd
%T Derived tame and derived wild algebras
%J Algebra and discrete mathematics
%D 2004
%P 57-74
%N 1
%U http://geodesic.mathdoc.fr/item/ADM_2004_1_a4/
%G en
%F ADM_2004_1_a4
Yuriy A. Drozd. Derived tame and derived wild algebras. Algebra and discrete mathematics, no. 1 (2004), pp. 57-74. http://geodesic.mathdoc.fr/item/ADM_2004_1_a4/