Derived tame and derived wild algebras
Algebra and discrete mathematics, no. 1 (2004), pp. 57-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that every finite dimensional algebra over an algebraically closed field is either derived tame or derived wild. We also prove that any deformation of a derived wild algebra is derived wild.
Keywords: derived categories, derived tame and derived wild algebras, deformations of algebras, matrix problems, representations of boxes.
@article{ADM_2004_1_a4,
     author = {Yuriy A. Drozd},
     title = {Derived tame and derived wild algebras},
     journal = {Algebra and discrete mathematics},
     pages = {57--74},
     publisher = {mathdoc},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2004_1_a4/}
}
TY  - JOUR
AU  - Yuriy A. Drozd
TI  - Derived tame and derived wild algebras
JO  - Algebra and discrete mathematics
PY  - 2004
SP  - 57
EP  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2004_1_a4/
LA  - en
ID  - ADM_2004_1_a4
ER  - 
%0 Journal Article
%A Yuriy A. Drozd
%T Derived tame and derived wild algebras
%J Algebra and discrete mathematics
%D 2004
%P 57-74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2004_1_a4/
%G en
%F ADM_2004_1_a4
Yuriy A. Drozd. Derived tame and derived wild algebras. Algebra and discrete mathematics, no. 1 (2004), pp. 57-74. http://geodesic.mathdoc.fr/item/ADM_2004_1_a4/