Structural properties of extremal asymmetric colorings
Algebra and discrete mathematics, no. 4 (2003), pp. 92-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega$ be a space with probability measure $\mu$ for which the notion of symmetry is defined. Given $A\subseteq\Omega$, let $ms(A)$ denote the supremum of $\mu(B)$ over symmetric $B\subseteq A$. An $r$-coloring of $\Omega$ is a measurable map $\chi:\Omega\to{\{1,\dots,r\}}$ possibly undefined on a set of measure 0. Given an $r$-coloring $\chi$, let $ms(\Omega;\chi)=\max_{1\le i\le r}ms(\chi^{-1}(i))$. With each space $\Omega$ we associate a Ramsey type number $ms(\Omega,r)=\inf_\chi ms(\Omega;\chi)$. We call a coloring $\chi$ congruent if the monochromatic classes $\chi^{-1}(1),\dots,\chi^{-1}(r)$ are pairwise congruent, i.e., can be mapped onto each other by a symmetry of $\Omega$. We define $ms^{\star}(\Omega,r)$ to be the infimum of $ms(\Omega;\chi)$ over congruent $\chi$. We prove that $ms(S^1,r)=ms^{\star}(S^1,r)$ for the unitary circle $S^1$ endowed with standard symmetries of a plane, estimate $ms^{\star}([0,1),r)$ for the unitary interval of reals considered with central symmetry, and explore some other regularity properties of extremal colorings for various spaces.
Keywords: continuous Ramsey theory, asymmetric colorings, symmetry of a Euclidean space, polyominoes.
@article{ADM_2003_4_a8,
     author = {Oleg Verbitsky},
     title = {Structural properties of extremal asymmetric colorings},
     journal = {Algebra and discrete mathematics},
     pages = {92--117},
     publisher = {mathdoc},
     number = {4},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2003_4_a8/}
}
TY  - JOUR
AU  - Oleg Verbitsky
TI  - Structural properties of extremal asymmetric colorings
JO  - Algebra and discrete mathematics
PY  - 2003
SP  - 92
EP  - 117
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2003_4_a8/
LA  - en
ID  - ADM_2003_4_a8
ER  - 
%0 Journal Article
%A Oleg Verbitsky
%T Structural properties of extremal asymmetric colorings
%J Algebra and discrete mathematics
%D 2003
%P 92-117
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2003_4_a8/
%G en
%F ADM_2003_4_a8
Oleg Verbitsky. Structural properties of extremal asymmetric colorings. Algebra and discrete mathematics, no. 4 (2003), pp. 92-117. http://geodesic.mathdoc.fr/item/ADM_2003_4_a8/