On equivalence of some subcategories of modules in Morita contexts
Algebra and discrete mathematics, no. 3 (2003), pp. 46-53
Voir la notice de l'article provenant de la source Math-Net.Ru
A Morita context $(R,\,_RV_S,\,_SW_R,\,S)$ defines the isomorphism $\mathcal L_0(R)\cong\mathcal L_0(S)$ of lattices of torsions $r\geq r_I$ of $R$-$Mod$ and torsions $s\geq r_J$ of $S$-$Mod$, where $I$ and $J$ are the trace ideals of the given context. For every pair $(r,s)$ of corresponding torsions the modifications of functors $T^W=W\otimes_{R^-}$ and $T^V=V\otimes_{S^-}$ are considered:
\begin{equation*}
R\textrm{-}Mod\supseteq\mathcal P(r)
????????????
\mathcal P(s)\subseteq S\textrm{-}Mod,
\end{equation*}
where $\mathcal P(r)$ and $\mathcal P(s)$ are the classes of torsion free modules. It is proved that these functors define the equivalence
\begin{equation*}
\mathcal P(r)\cap\mathcal J_I\approx\mathcal P(s)\cap\mathcal J_J,
\end{equation*}
where $\mathcal P(r)=\{_RM\mid r(M)=0\}$ and $\mathcal J_I=\{_RM\mid IM=M\}$.
Keywords:
torsion (torsion theory)
Mots-clés : Morita context, torsion free module, accessible module, equivalence.
Mots-clés : Morita context, torsion free module, accessible module, equivalence.
@article{ADM_2003_3_a2,
author = {A. I. Kashu},
title = {On equivalence of some subcategories of modules in {Morita} contexts},
journal = {Algebra and discrete mathematics},
pages = {46--53},
publisher = {mathdoc},
number = {3},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2003_3_a2/}
}
A. I. Kashu. On equivalence of some subcategories of modules in Morita contexts. Algebra and discrete mathematics, no. 3 (2003), pp. 46-53. http://geodesic.mathdoc.fr/item/ADM_2003_3_a2/