$N$~-- real fields
Algebra and discrete mathematics, no. 3 (2003), pp. 1-6.

Voir la notice de l'article provenant de la source Math-Net.Ru

A field $F$ is $n$-real if $-1$ is not the sum of $n$ squares in $F$. It is shown that a field $F$ is $m$-real if and only if $\text{rank }(AA^t)=\text{rank }(A)$ for every $n\times m$ matrix $A$ with entries from $F$. An $n$-real field $F$ is $n$-real closed if every proper algebraic extension of $F$ is not $n$-real. It is shown that if a $3$-real field $F$ is $2$-real closed, then $F$ is a real closed field. For $F$ a quadratic extension of the field of rational numbers, the greatest integer $n$ such that $F$ is $n$-real is determined.
Keywords: $n$-real, $n$-real closed.
@article{ADM_2003_3_a0,
     author = {Shalom Feigelstock},
     title = {$N$~-- real fields},
     journal = {Algebra and discrete mathematics},
     pages = {1--6},
     publisher = {mathdoc},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2003_3_a0/}
}
TY  - JOUR
AU  - Shalom Feigelstock
TI  - $N$~-- real fields
JO  - Algebra and discrete mathematics
PY  - 2003
SP  - 1
EP  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2003_3_a0/
LA  - en
ID  - ADM_2003_3_a0
ER  - 
%0 Journal Article
%A Shalom Feigelstock
%T $N$~-- real fields
%J Algebra and discrete mathematics
%D 2003
%P 1-6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2003_3_a0/
%G en
%F ADM_2003_3_a0
Shalom Feigelstock. $N$~-- real fields. Algebra and discrete mathematics, no. 3 (2003), pp. 1-6. http://geodesic.mathdoc.fr/item/ADM_2003_3_a0/