An additive divisor problem in $\mathbb{Z}[i]$
Algebra and discrete mathematics, no. 1 (2003), pp. 103-110
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\tau(\alpha)$ be the number of divisors of the Gaussian integer $\alpha$. An asymptotic formula for the summatory function $\sum\limits_{N(\alpha)\leq x}\tau(\alpha)\tau(\alpha+\beta)$ is obtained under the condition $N(\beta)\leq x^{3/8}$. This is a generalization of the well-known additive divisor problem for the natural numbers.
Keywords:
additive divisor problem; asymptotic formula.
@article{ADM_2003_1_a9,
author = {O. V. Savasrtu and P. D. Varbanets},
title = {An additive divisor problem in $\mathbb{Z}[i]$},
journal = {Algebra and discrete mathematics},
pages = {103--110},
publisher = {mathdoc},
number = {1},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2003_1_a9/}
}
O. V. Savasrtu; P. D. Varbanets. An additive divisor problem in $\mathbb{Z}[i]$. Algebra and discrete mathematics, no. 1 (2003), pp. 103-110. http://geodesic.mathdoc.fr/item/ADM_2003_1_a9/