Ramseyan variations on symmetric subsequences
Algebra and discrete mathematics, no. 1 (2003), pp. 111-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem of Dekking in the combinatorics of words implies that there exists an injective order-preserving transformation $f:\{0,1,\dots,n\}\to\{0,1,\dots,2n\}$ with the restriction $f(i+1)\le f(i)+2$ such that for every 5-term arithmetic progression $P$ its image $f(P)$ is not an arithmetic progression. In this paper we consider symmetric sets in place of arithmetic progressions and prove lower and upper bounds for the maximum $M=M(n)$ such that every $f$ as above preserves the symmetry of at least one symmetric set $S\subseteq\{0,1,\dots,n\}$ with $|S|\ge M$.
@article{ADM_2003_1_a10,
     author = {Oleg Verbitsky},
     title = {Ramseyan variations on symmetric subsequences},
     journal = {Algebra and discrete mathematics},
     pages = {111--124},
     publisher = {mathdoc},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2003_1_a10/}
}
TY  - JOUR
AU  - Oleg Verbitsky
TI  - Ramseyan variations on symmetric subsequences
JO  - Algebra and discrete mathematics
PY  - 2003
SP  - 111
EP  - 124
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2003_1_a10/
LA  - en
ID  - ADM_2003_1_a10
ER  - 
%0 Journal Article
%A Oleg Verbitsky
%T Ramseyan variations on symmetric subsequences
%J Algebra and discrete mathematics
%D 2003
%P 111-124
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2003_1_a10/
%G en
%F ADM_2003_1_a10
Oleg Verbitsky. Ramseyan variations on symmetric subsequences. Algebra and discrete mathematics, no. 1 (2003), pp. 111-124. http://geodesic.mathdoc.fr/item/ADM_2003_1_a10/