Metrizable ball structures
Algebra and discrete mathematics, no. 1 (2002), pp. 129-141
Cet article a éte moissonné depuis la source Math-Net.Ru
A ball structure is a triple $(X,P,B)$, where $X$, $P$ are nonempty sets and, for any $x\in X$, $\alpha\in P$, $B(x,\alpha)$ is a subset of $X$, $x\in B(x,\alpha)$, which is called a ball of radius $\alpha$ around $x$. We characterize up to isomorphism the ball structures related to the metric spaces of different types and groups.
Keywords:
ball structure, ball isomorphism, metrizablility.
@article{ADM_2002_1_a7,
author = {I. V. Protasov},
title = {Metrizable ball structures},
journal = {Algebra and discrete mathematics},
pages = {129--141},
year = {2002},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2002_1_a7/}
}
I. V. Protasov. Metrizable ball structures. Algebra and discrete mathematics, no. 1 (2002), pp. 129-141. http://geodesic.mathdoc.fr/item/ADM_2002_1_a7/