Metrizable ball structures
Algebra and discrete mathematics, no. 1 (2002), pp. 129-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

A ball structure is a triple $(X,P,B)$, where $X$$P$ are nonempty sets and, for any $x\in X$, $\alpha\in P$, $B(x,\alpha)$ is a subset of $X$, $x\in B(x,\alpha)$, which is called a ball of radius $\alpha$ around $x$. We characterize up to isomorphism the ball structures related to the metric spaces of different types and groups.
Keywords: ball structure, ball isomorphism, metrizablility.
@article{ADM_2002_1_a7,
     author = {I. V. Protasov},
     title = {Metrizable ball structures},
     journal = {Algebra and discrete mathematics},
     pages = {129--141},
     publisher = {mathdoc},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2002_1_a7/}
}
TY  - JOUR
AU  - I. V. Protasov
TI  - Metrizable ball structures
JO  - Algebra and discrete mathematics
PY  - 2002
SP  - 129
EP  - 141
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2002_1_a7/
LA  - en
ID  - ADM_2002_1_a7
ER  - 
%0 Journal Article
%A I. V. Protasov
%T Metrizable ball structures
%J Algebra and discrete mathematics
%D 2002
%P 129-141
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2002_1_a7/
%G en
%F ADM_2002_1_a7
I. V. Protasov. Metrizable ball structures. Algebra and discrete mathematics, no. 1 (2002), pp. 129-141. http://geodesic.mathdoc.fr/item/ADM_2002_1_a7/