Spectral asymptotics for a family of LCM matrices
Algebra i analiz, Tome 34 (2022) no. 3, pp. 207-231

Voir la notice de l'article provenant de la source Math-Net.Ru

The family of arithmetical matrices is studied given explicitly by $$ E(\sigma,\tau)= \Big\{\frac{n^\sigma m^\sigma}{[n,m]^\tau}\Big\}_{n,m=1}^\infty, $$ where $[n,m]$ is the least common multiple of $n$ and $m$ and the real parameters $\sigma$ and $\tau$ satisfy $\rho:=\tau-2\sigma>0$, $\tau-\sigma>\frac12$, and $\tau>0$. It is proved that $E(\sigma,\tau)$ is a compact selfadjoint positive definite operator on $\ell^2(\mathbb{N})$, and the ordered sequence of eigenvalues of $E(\sigma,\tau)$ obeys the asymptotic relation $$ \lambda_n(E(\sigma,\tau))=\frac{\varkappa(\sigma,\tau)}{n^\rho}+o(n^{-\rho}),\quad n\to\infty, $$ with some $\varkappa(\sigma,\tau)>0$. This fact is applied to the asymptotics of singular values of truncated multiplicative Toeplitz matrices with the symbol given by the Riemann zeta function on the vertical line with abscissa $\sigma1/2$. The relationship of the spectral analysis of $E(\sigma,\tau)$ with the theory of generalized prime systems is also pointed out.
Keywords: arithmetical matrix, multiplicative Toeplitz matrix, eigenvalue asymptotics.
Mots-clés : LCM matrix
@article{AA_2022_34_3_a9,
     author = {T. Hilberdink and A. Pushnitski},
     title = {Spectral asymptotics for a family of {LCM} matrices},
     journal = {Algebra i analiz},
     pages = {207--231},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_3_a9/}
}
TY  - JOUR
AU  - T. Hilberdink
AU  - A. Pushnitski
TI  - Spectral asymptotics for a family of LCM matrices
JO  - Algebra i analiz
PY  - 2022
SP  - 207
EP  - 231
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_3_a9/
LA  - en
ID  - AA_2022_34_3_a9
ER  - 
%0 Journal Article
%A T. Hilberdink
%A A. Pushnitski
%T Spectral asymptotics for a family of LCM matrices
%J Algebra i analiz
%D 2022
%P 207-231
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2022_34_3_a9/
%G en
%F AA_2022_34_3_a9
T. Hilberdink; A. Pushnitski. Spectral asymptotics for a family of LCM matrices. Algebra i analiz, Tome 34 (2022) no. 3, pp. 207-231. http://geodesic.mathdoc.fr/item/AA_2022_34_3_a9/

[1] Aistleitner C., “Lower bounds for the maximum of the Riemann zeta function along vertical lines”, Math. Ann., 365:1-2 (2016), 473–496 | DOI | MR | Zbl | DOI | MR | Zbl

[2] Balazard M., “La version de Diamond de la méthode de l'hyperbole de Dirichlet”, Enseig. Math. (2), 45:3-4 (1999), 253–270 | MR | Zbl | MR | Zbl

[3] Bédos E., “On Følner nets, Szegő's theorem and other eigenvalue distribution theorems”, Exposition. Math., 15:3 (1997), 193–228 | MR | Zbl | MR | Zbl

[4] Bogoya J. M., Böttcher A., Grudsky S. M., “Eigenvalues of Hermitian Toeplitz matrices with polynomially increasing entries”, J. Spectr. Theory, 2:3 (2012), 267–292 | DOI | MR | Zbl | DOI | MR | Zbl

[5] Bondarenko A., Seip K., “Large GCD sums and extreme values of the Riemann zeta function”, Duke Math. J., 166:9 (2017), 1685–1701 | DOI | MR | Zbl | DOI | MR | Zbl

[6] Bourque K., Ligh S., “Matrices associated with arithmetical functions”, Linear Multilinear Algebra, 34:3-4 (1993), 261–267 | DOI | MR | Zbl | DOI | MR | Zbl

[7] Böttcher A., “Schatten norms of Toeplitz matrices with Fisher–Hartwig singularities”, Electron. J. Linear Algebra, 15 (2006), 251–259 | MR | Zbl | MR | Zbl

[8] Böttcher A., Virtanen J., “Norms of Toeplitz matrices with Fisher–Hartwig symbols”, SIAM J. Matrix Anal. Appl., 29:2 (2007), 660–671 | DOI | MR | DOI | MR

[9] Diamond H., Zhang W.-B., Beurling generalized numbers, Math. Surveys Monogr., 213, Amer. Math. Soc., Providence, RI, 2016 | DOI | MR | Zbl | DOI | MR | Zbl

[10] Haukkanen P., “An upper bound for the $l_p$-norm of a GCD-related matrix”, J. Inequal. Appl., 2006, 25020, 6 pp. | MR | Zbl | MR | Zbl

[11] Hedenmalm H., Lindqvist P., Seip K., “A Hilbert space of Dirichlet series and systems of dilated functions in $L^2(0,1)$”, Duke Math. J., 86:1 (1997), 1–37 | DOI | MR | Zbl | DOI | MR | Zbl

[12] Hilberdink T., “An arithmetical mapping and applications to $\Omega$-results for the Riemann zeta function”, Acta Arith., 139:4 (2009), 341–367 | DOI | MR | Zbl | DOI | MR | Zbl

[13] Hilberdink T., “Singular values of multiplicative Toeplitz matrices”, Linear Multilinear Algebra, 65:4 (2017), 813–829 | DOI | MR | Zbl | DOI | MR | Zbl

[14] Hilberdink T., “Matrices with multiplicative entries are tensor products”, Linear Algebra Appl., 532 (2017), 179–197 | DOI | MR | Zbl | DOI | MR | Zbl

[15] Hong S., Loewy R., “Asymptotic behavior of eigenvalues of greatest common divisor matrices”, Glasg. Math. J., 46:3 (2004), 551–569 | DOI | MR | Zbl | DOI | MR | Zbl

[16] Hong S., Enoch Lee K. S., “Asymptotic behavior of eigenvalues of reciprocal power LCM matrices”, Glasg. Math. J., 50 (2008), 163–174 | DOI | MR | Zbl | DOI | MR | Zbl

[17] Korevaar J., “A century of complex Tauberian theory”, Bull. Amer. Math. Soc. (N.S.), 39:4 (2002), 475–531 | DOI | MR | Zbl | DOI | MR | Zbl

[18] Lindqvist P., Seip K., “Note on some greatest common divisor matrices”, Acta Arith., 84:2 (1998), 149–154 | DOI | MR | Zbl | DOI | MR | Zbl

[19] Mattila M., Haukkanen P., “On the eigenvalues of certain number-theoretic matrices”, East-West J. Math., 14:2 (2012), 121–130 | MR | Zbl | MR | Zbl

[20] Nikolski N., Toeplitz matrices and operators, Cambridge Stud. Adv. Math., 182, Cambridge Univ. Press, Cambridge, 2020 | MR | Zbl | MR | Zbl

[21] Nikolski N., Pushnitski A., “Szegő-type limit theorems for “multiplicative Toeplitz” operators and non-Følner approximations”, Algebra i analiz, 32:6 (2020), 101–123 | MR | MR

[22] Nikolski N., “In a shadow of the RH: cyclic vectors of Hardy spaces on the Hilbert multidisc”, Ann. Inst. Fourier (Grenoble), 62:5 (2012), 1601–1626 | DOI | MR | Zbl | DOI | MR | Zbl

[23] Smith H. J. S., “On the value of a certain arithmetical determinant”, Proc. London Math. Soc., 7 (1875–1876), 208–212 | DOI | MR | Zbl | DOI | MR | Zbl

[24] Toeplitz O., “Zur Theorie der Dirichletschen Reihen”, Amer. J. Math., 60:4 (1938), 880–888 | DOI | MR | DOI | MR

[25] Wintner A., “Diophantine approximations and Hilbert's space”, Amer. J. Math., 66:4 (1944), 564–578 | DOI | MR | Zbl | DOI | MR | Zbl