Functions with small and large spectra as (non)extreme points in subspaces of $H^\infty$
Algebra i analiz, Tome 34 (2022) no. 3, pp. 193-206

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a subset $\Lambda$ of $\mathbb Z_+:=\{0,1,2,\dots\}$, let $H^\infty(\Lambda)$ denote the space of bounded analytic functions $f$ on the unit disk whose coefficients $\widehat f(k)$ vanish for $k\notin\Lambda$. Assuming that either $\Lambda$ or $\mathbb Z_+\setminus\Lambda$ is finite, we determine the extreme points of the unit ball in $H^\infty(\Lambda)$.
Keywords: bounded analytic functions, spectral gaps, lacunary polynomials, extreme points.
@article{AA_2022_34_3_a8,
     author = {K. M. Dyakonov},
     title = {Functions with small and large spectra as (non)extreme points in subspaces of $H^\infty$},
     journal = {Algebra i analiz},
     pages = {193--206},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_3_a8/}
}
TY  - JOUR
AU  - K. M. Dyakonov
TI  - Functions with small and large spectra as (non)extreme points in subspaces of $H^\infty$
JO  - Algebra i analiz
PY  - 2022
SP  - 193
EP  - 206
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_3_a8/
LA  - en
ID  - AA_2022_34_3_a8
ER  - 
%0 Journal Article
%A K. M. Dyakonov
%T Functions with small and large spectra as (non)extreme points in subspaces of $H^\infty$
%J Algebra i analiz
%D 2022
%P 193-206
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2022_34_3_a8/
%G en
%F AA_2022_34_3_a8
K. M. Dyakonov. Functions with small and large spectra as (non)extreme points in subspaces of $H^\infty$. Algebra i analiz, Tome 34 (2022) no. 3, pp. 193-206. http://geodesic.mathdoc.fr/item/AA_2022_34_3_a8/

[1] Amar É., Lederer A., “Points exposés de la boule unité de $H^\infty(D)$”, C. R. Acad. Sci. Paris Sér. A, 272 (1971), 1449–1452 | MR | Zbl | MR | Zbl

[2] Axler S., Linear algebra done right, Undergrad. Texts in Math., Third ed., Springer, Cham, 2015 | DOI | MR | Zbl | DOI | MR | Zbl

[3] de Leeuw K., Rudin W., “Extreme points and extremum problems in $H_1$”, Pacific J. Math., 8 (1958), 467–485 | DOI | MR | Zbl | DOI | MR | Zbl

[4] Dyakonov K. M., “Interpolating functions of minimal norm, star-invariant subspaces, and kernels of Toeplitz operators”, Proc. Amer. Math. Soc., 116:4 (1992), 1007–1013 | MR | Zbl | MR | Zbl

[5] Dyakonov K. M., “Polynomials and entire functions: zeros and geometry of the unit ball”, Math. Res. Lett., 7:4 (2000), 393–404 | DOI | MR | Zbl | DOI | MR | Zbl

[6] Dyakonov K. M., “Extreme points in spaces of polynomials”, Math. Res. Lett., 10:5-6 (2003), 717–728 | DOI | MR | Zbl | DOI | MR | Zbl

[7] Dyakonov K. M., “Two problems on coinvariant subspaces of the shift operator”, Integral Equations Operator Theory, 78:2 (2014), 151–154 | DOI | MR | Zbl | DOI | MR | Zbl

[8] Dyakonov K. M., “Lacunary polynomials in $L^1$: geometry of the unit sphere”, Adv. Math., 381 (2021), 107607, 24 pp. | DOI | MR | Zbl | DOI | MR | Zbl

[9] Dyakonov K. M., “A Rudin–de Leeuw type theorem for functions with spectral gaps”, C. R. Math. Acad. Sci. Paris, 359 (2021), 797–803 | MR | Zbl | MR | Zbl

[10] Dyakonov K. M., “Nearly outer functions as extreme points in punctured Hardy spaces”, Adv. Math., 401 (2022), 108330, 22 pp. | DOI | MR | Zbl | DOI | MR | Zbl

[11] Garnett J. B., Bounded analytic functions, Grad. Texts in Math., 236, Revised first ed., Springer, New York, 2007 | MR | MR

[12] Hoffman K., Banach spaces of analytic functions, Prentice-Hall Ser. Modern Anal., Prentice-Hall, Englewood Cliffs, NJ, 1962 | MR | Zbl | MR | Zbl

[13] Koosis P., Introduction to $H_p$ spaces, Cambridge Tracts in Math., 115, Second ed., Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl | MR | Zbl

[14] Neuwirth S., “The maximum modulus of a trigonometric trinomial”, J. Anal. Math., 104 (2008), 371–396 | DOI | MR | Zbl | DOI | MR | Zbl