. We also study briefly the dynamics of a certain nonlinear projection operator that characterizes Hilbert points as its fixed points. We exhibit an example of a function $\varphi$ that is a Hilbert point in $H^p(\mathbb{T}^3)$ for $p=2, 4$, but not for any other $p$; this is verified rigorously for $p>4$ but only numerically for $1\leq p<4$.
@article{AA_2022_34_3_a5,
author = {O. F. Brevig and J. Ortega-Cerd\'a and K. Seip},
title = {Hilbert points in {Hardy} spaces},
journal = {Algebra i analiz},
pages = {131--158},
year = {2022},
volume = {34},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AA_2022_34_3_a5/}
}
O. F. Brevig; J. Ortega-Cerdá; K. Seip. Hilbert points in Hardy spaces. Algebra i analiz, Tome 34 (2022) no. 3, pp. 131-158. http://geodesic.mathdoc.fr/item/AA_2022_34_3_a5/
[1] The On-Line Encyclopedia of integer sequences, , OEIS Foundation Inc, 2021 https://oeis.org/A130046 | MR
[2] Baernstein II A., Culverhouse R. C., “Majorization of sequences, sharp vector Khinchin inequalities, and bisubharmonic functions”, Studia Math., 152:3 (2002), 231–248 | DOI | MR | Zbl
[3] Beurling A., “On two problems concerning linear transformations in Hilbert space”, Acta Math., 81 (1948), 239–255 | DOI | MR
[4] Brevig O. F., “Linear functions and duality on the infinite polytorus”, Collect. Math., 70:3 (2019), 493–500 | DOI | MR | Zbl
[5] Brevig O. F., Ortega-Cerdà J., Seip K., “Idempotent Fourier multipliers acting contractively on $H^p$ spaces”, Geom. Funct. Anal., 31:6 (2021), 1377–1413 | DOI | MR | Zbl
[6] König H., “On the best constants in the Khintchine inequality for Steinhaus variables”, Israel J. Math., 203:1 (2014), 23–57 | DOI | MR | Zbl
[7] König H., Kwapień S., “Best Khintchine type inequalities for sums of independent, rotationally invariant random vectors”, Positivity, 5:2 (2001), 115–152 | DOI | MR | Zbl
[8] Lancien F., Randrianantoanina B., Ricard É., “On contractive projections in Hardy spaces”, Studia Math., 171:1 (2005), 93–102 | DOI | MR | Zbl
[9] Nikolski N. K., Hardy spaces, Cambridge Stud. Adv. Math., 179, Cambridge Univ. Press, Cambridge, 2019 | MR | Zbl
[10] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980
[11] Rudin W., Function theory in polydiscs, W. A. Benjamin, Inc., New York-Amsterdam, 1969 | MR | Zbl
[12] Sawa J., “The best constant in the Khintchine inequality for complex Steinhaus variables, the case $p=1$”, Studia Math., 81:1 (1985), 107–126 | DOI | MR | Zbl
[13] Shapiro H. S., Topics in approximation theory, Lecture Notes in Math., 187, Springer-Verlag, Berlin-New York, 1971 | DOI | MR | Zbl