Hilbert points in Hardy spaces
Algebra i analiz, Tome 34 (2022) no. 3, pp. 131-158

Voir la notice de l'article provenant de la source Math-Net.Ru

A Hilbert point in $H^p(\mathbb{T}^d)$, for $d\geq1$ and $1\leq p \leq \infty$, is a nontrivial function $\varphi$ in $H^p(\mathbb{T}^d)$ such that $\| \varphi \|_{H^p(\mathbb{T}^d)} \leq \|\varphi + f\|_{H^p(\mathbb{T}^d)}$ whenever $f$ is in $H^p(\mathbb{T}^d)$ and orthogonal to $\varphi$ in the usual $L^2$ sense. When $p\neq 2$, $\varphi$ is a Hilbert point in $H^p(\mathbb{T})$ if and only if $\varphi$ is a nonzero multiple of an inner function. An inner function on $\mathbb{T}^d$ is a Hilbert point in any of the spaces $H^p(\mathbb{T}^d)$, but there are other Hilbert points as well when $d\geq 2$. We investigate the case of $1$-homogeneous polynomials in depth and obtain as a byproduct a new proof of the sharp Khinchin inequality for Steinhaus variables in the range $2$. We also study briefly the dynamics of a certain nonlinear projection operator that characterizes Hilbert points as its fixed points. We exhibit an example of a function $\varphi$ that is a Hilbert point in $H^p(\mathbb{T}^3)$ for $p=2, 4$, but not for any other $p$; this is verified rigorously for $p>4$ but only numerically for $1\leq p4$.
Keywords: Hardy spaces, inner functions, Hilbert points, $1$-homogeneous polynomials, Khinchin inequality for Steinhaus variables.
@article{AA_2022_34_3_a5,
     author = {O. F. Brevig and J. Ortega-Cerd\'a and K. Seip},
     title = {Hilbert points in {Hardy} spaces},
     journal = {Algebra i analiz},
     pages = {131--158},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_3_a5/}
}
TY  - JOUR
AU  - O. F. Brevig
AU  - J. Ortega-Cerdá
AU  - K. Seip
TI  - Hilbert points in Hardy spaces
JO  - Algebra i analiz
PY  - 2022
SP  - 131
EP  - 158
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_3_a5/
LA  - en
ID  - AA_2022_34_3_a5
ER  - 
%0 Journal Article
%A O. F. Brevig
%A J. Ortega-Cerdá
%A K. Seip
%T Hilbert points in Hardy spaces
%J Algebra i analiz
%D 2022
%P 131-158
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2022_34_3_a5/
%G en
%F AA_2022_34_3_a5
O. F. Brevig; J. Ortega-Cerdá; K. Seip. Hilbert points in Hardy spaces. Algebra i analiz, Tome 34 (2022) no. 3, pp. 131-158. http://geodesic.mathdoc.fr/item/AA_2022_34_3_a5/

[1] The On-Line Encyclopedia of integer sequences, , OEIS Foundation Inc, 2021 https://oeis.org/A130046 | MR | MR

[2] Baernstein II A., Culverhouse R. C., “Majorization of sequences, sharp vector Khinchin inequalities, and bisubharmonic functions”, Studia Math., 152:3 (2002), 231–248 | DOI | MR | Zbl | DOI | MR | Zbl

[3] Beurling A., “On two problems concerning linear transformations in Hilbert space”, Acta Math., 81 (1948), 239–255 | DOI | MR | DOI | MR

[4] Brevig O. F., “Linear functions and duality on the infinite polytorus”, Collect. Math., 70:3 (2019), 493–500 | DOI | MR | Zbl | DOI | MR | Zbl

[5] Brevig O. F., Ortega-Cerdà J., Seip K., “Idempotent Fourier multipliers acting contractively on $H^p$ spaces”, Geom. Funct. Anal., 31:6 (2021), 1377–1413 | DOI | MR | Zbl | DOI | MR | Zbl

[6] König H., “On the best constants in the Khintchine inequality for Steinhaus variables”, Israel J. Math., 203:1 (2014), 23–57 | DOI | MR | Zbl | DOI | MR | Zbl

[7] König H., Kwapień S., “Best Khintchine type inequalities for sums of independent, rotationally invariant random vectors”, Positivity, 5:2 (2001), 115–152 | DOI | MR | Zbl | DOI | MR | Zbl

[8] Lancien F., Randrianantoanina B., Ricard É., “On contractive projections in Hardy spaces”, Studia Math., 171:1 (2005), 93–102 | DOI | MR | Zbl | DOI | MR | Zbl

[9] Nikolski N. K., Hardy spaces, Cambridge Stud. Adv. Math., 179, Cambridge Univ. Press, Cambridge, 2019 | MR | Zbl | MR | Zbl

[10] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980

[11] Rudin W., Function theory in polydiscs, W. A. Benjamin, Inc., New York-Amsterdam, 1969 | MR | Zbl | MR | Zbl

[12] Sawa J., “The best constant in the Khintchine inequality for complex Steinhaus variables, the case $p=1$”, Studia Math., 81:1 (1985), 107–126 | DOI | MR | Zbl | DOI | MR | Zbl

[13] Shapiro H. S., Topics in approximation theory, Lecture Notes in Math., 187, Springer-Verlag, Berlin-New York, 1971 | DOI | MR | Zbl | DOI | MR | Zbl