Functons of perturbed pairs of noncommuting dissipative operator
Algebra i analiz, Tome 34 (2022) no. 3, pp. 93-114

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f$ be a function belonging to the nonhomogeneous analytic Besov space $(\mathrm{\text{�}}_{\infty,1}^1)_+(\mathbb{R}^2)$. For a pair $(L,M)$ of not necessarily commuting maximal dissipative operators, the function $f(L,M)$ is introduced as a densely defined linear. For $p\in[1,2]$, we prove that if $(L_1,M_1)$ and $(L_2,M_2)$ are pairs of not necessarily commuting maximal dissipative operators such that the two difeerences $L_1-L_2$$M_1-M_2$ belong to the Schatten–von Neumann class $\mathbf{S}_p$, then for every $f$ in $(\mathrm{\text{�}}_{\infty,1}^1)_+(\mathbb{R}^2)$ the operator difference $f(L_1,M_1)-f(L_2,M_2)$ belongs to $\mathbf{S}_p$ and the following Lipschitz-type estimate holds true: $ \|f(L_1,M_1)-f(L_2,M_2)\|_{\mathbf{S}_p} \le\mathrm{const}\,\|f\|_{\mathrm{\text{�}}_{\infty,1}^1}\max\big\{\|L_1-L_2\|_{\mathbf{S}_p},\|M_1-M_2\|_{\mathbf{S}_p}\big\}. $
Keywords: dissipative operator, Haagerup tensor product, Haagerup-type tensor products, semispectral measure, functions of noncommuting operators, Lipschitz-type estimates for functions of operators, Schatten–von Neumann classes.
Mots-clés : Besov classes
@article{AA_2022_34_3_a3,
     author = {A. B. Aleksandrov and V. V. Peller},
     title = {Functons of perturbed pairs of noncommuting dissipative operator},
     journal = {Algebra i analiz},
     pages = {93--114},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_3_a3/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
AU  - V. V. Peller
TI  - Functons of perturbed pairs of noncommuting dissipative operator
JO  - Algebra i analiz
PY  - 2022
SP  - 93
EP  - 114
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_3_a3/
LA  - ru
ID  - AA_2022_34_3_a3
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%A V. V. Peller
%T Functons of perturbed pairs of noncommuting dissipative operator
%J Algebra i analiz
%D 2022
%P 93-114
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2022_34_3_a3/
%G ru
%F AA_2022_34_3_a3
A. B. Aleksandrov; V. V. Peller. Functons of perturbed pairs of noncommuting dissipative operator. Algebra i analiz, Tome 34 (2022) no. 3, pp. 93-114. http://geodesic.mathdoc.fr/item/AA_2022_34_3_a3/

[1] Aleksandrov A. B., Nazarov F. L., Peller V. V., “Functions of noncommuting self-adjoint operators under perturbation and estimates of triple operator integrals”, Adv. Math., 295 (2016), 1–52 | DOI | MR | Zbl | DOI | MR | Zbl

[2] Aleksandrov A. B., Peller V. V., “Funktsii ot vozmuschennykh dissipativnykh operatorov”, Algebra i analiz, 23:2 (2011), 9–51 | MR | MR

[3] Aleksandrov A. B., Peller V. V., “Operatorno lipshitsevy funktsii”, Uspekhi mat. nauk, 71:4 (2016), 3–106 | MR | Zbl | MR | Zbl

[4] Aleksandrov A. B., Peller V. V., “Multiple operator integrals, Haagerup and Haagerup-like tensor products, and operator ideals”, Bull. Lond. Math. Soc., 49:3 (2016), 463–479 | DOI | MR | DOI | MR

[5] Aleksandrov A. B., Peller V. V., “Dissipative operators and operator Lipschitz functions”, Proc. Amer. Math. Soc., 147:5 (2019), 2081–2093 | DOI | MR | Zbl | DOI | MR | Zbl

[6] Aleksandrov A. B., Peller V. V., “Functions of perturbed commuting dissipative operators”, Math. Nachr. (to appear)

[7] Aleksandrov A. B., Peller V. V., Functions of perturbed noncommuting unbounded self-adjoint operators, to appear

[8] Birman M. Sh., Solomyak M. Z., “Dvoinye operatornye integraly Stiltesa”, Probl. mat. fiz., 1, LGU, L., 1966, 33–67 | MR | MR

[9] Birman M. Sh., Solomyak M. Z., “Dvoinye operatornye integraly Stiltesa. II”, Probl. mat. fiz., 2, LGU, L., 1967, 26–60 | MR | MR

[10] Birman M. Sh., Solomyak M. Z., “Dvoinye operatornye integraly Stiltesa. III. Predelnyi perekhod pod znakom integrala”, Probl. mat. fiz., 6, LGU, L., 1973, 27–53

[11] Daletskii Yu. L., Krein S. G., “Integrirovanie i differentsirovanie ermitovykh operatorov i prilozhenie k teorii vozmuschenii”, Tr. semin. funktsional. anal., 1, VGU, Voronezh, 1956, 81–106

[12] Juschenko K., Todorov I. G., Turowska L., “Multidimensional operator multipliers”, Trans. Amer. Math. Soc., 361:9 (2009), 4683–4720 | DOI | MR | Zbl | DOI | MR | Zbl

[13] Naimark M. A., “Spektralnye funktsii simmetricheskogo operatora”, Izv. AN SSSR. Ser. mat., 4:3 (1940), 277–318 | MR | MR

[14] Peetre J., New thoughts on Besov spaces, v. 1, Duke Univ. Math. Ser., Duke Univ. Press, Durham, NC, 1976 | MR | Zbl | MR | Zbl

[15] Peller V. V., “Hankel operators in the perturbation theory of unbounded self-adjoint operators”, Analysis and partial differential equations, Lecture Notes Pure Appl. Math., 122, Dekker, New York, 1990, 529–544 | MR | MR

[16] Peller V. V., “Multiple operator integrals in perturbation theory”, Bull. Math. Sci., 6 (2016), 15–88 | DOI | MR | Zbl | DOI | MR | Zbl