Stationary phase method, powers of functions, and applications to functional analysis
Algebra i analiz, Tome 34 (2022) no. 3, pp. 51-92

Voir la notice de l'article provenant de la source Math-Net.Ru

The utility of the (weighted) van der Corput inequalities or of the stationary phase method is illustrated with various examples borrowed from: differentiability issues (Riemann's function and related); functional analysis on Banach spaces or algebras of analytic functions (composition operators); and local Banach space geometry (Schäffer's problem).
Keywords: stationary phase method, powers of functions, Blaschke factors, Wiener space, Dirichlet series, composition operators, Schäffer's problem, Toeplitz operators.
@article{AA_2022_34_3_a2,
     author = {H. Queff\'elec and R. Zarouf},
     title = {Stationary phase method, powers of functions, and applications to functional analysis},
     journal = {Algebra i analiz},
     pages = {51--92},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_3_a2/}
}
TY  - JOUR
AU  - H. Queffélec
AU  - R. Zarouf
TI  - Stationary phase method, powers of functions, and applications to functional analysis
JO  - Algebra i analiz
PY  - 2022
SP  - 51
EP  - 92
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_3_a2/
LA  - en
ID  - AA_2022_34_3_a2
ER  - 
%0 Journal Article
%A H. Queffélec
%A R. Zarouf
%T Stationary phase method, powers of functions, and applications to functional analysis
%J Algebra i analiz
%D 2022
%P 51-92
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2022_34_3_a2/
%G en
%F AA_2022_34_3_a2
H. Queffélec; R. Zarouf. Stationary phase method, powers of functions, and applications to functional analysis. Algebra i analiz, Tome 34 (2022) no. 3, pp. 51-92. http://geodesic.mathdoc.fr/item/AA_2022_34_3_a2/

[1] Agrafeuil C., Zarrabi M., “Closed ideals with countable hull in algebras of analytic functions smooth up to the boundary”, Publ. Mat., 52:1 (2008), 19–56 | DOI | MR | Zbl | DOI | MR | Zbl

[2] Andersson J., Turán's problem $10$ revisited, 2008, arXiv: math/0609271

[3] Andersson J., “On some power sum problems of Turán and Erdös”, Acta Math. Hungar., 70:4 (1996), 305–316 | DOI | MR | Zbl | DOI | MR | Zbl

[4] Bayart F., Finet C., Li D., Queffélec H., “Composition operators on the Wiener–Dirichlet algebra”, J. Operator Theory, 60:1 (2008), 45–70 | MR | Zbl | MR | Zbl

[5] Beurling A., Helson H., “Fourier–Stieltjes transforms with bounded powers”, Math. Scand., 1 (1953), 120–126 | DOI | MR | Zbl | DOI | MR | Zbl

[6] Bleistein N., Handelsman R. A., Asymptotic expansions of integrals, 2nd ed., Dover Publ., Inc., New York, 1986 | MR | MR

[7] Blyudze M. Yu., Shimorin S. M., “Otsenki norm stepenei funktsii v nekotorykh banakhovykh prostranstvakh”, Zap. nauch. semin. POMI, 206, 1993, 15–32

[8] Borichev A., Fouchet K., Zarouf R., On the Fourier coefficients of powers of a Blaschke factor and strongly annular functions, 2021, arXiv: 2107.00405

[9] Borovikov V. A., Uniform stationary phase method, IEE Electromagn. Waves Ser., 40, Inst. Engineer. and Technol., London, 1994 | MR | Zbl | MR | Zbl

[10] de Bruijn N. G., Asymptotic methods in analysis, Bibliotheca Math., IV, North–Holland Publ. Co., Amsterdam, 1958 | MR | Zbl | MR | Zbl

[11] Chamizo F., Ubis A., “Some Fourier series with gaps”, J. Anal. Math., 101 (2007), 179–197 | DOI | MR | Zbl | DOI | MR | Zbl

[12] Chester C., Friedman B., Ursell F., “An extension of the method of steepest descents”, Proc. Cambridge Philos. Soc., 53 (1957), 599–611 | DOI | MR | Zbl | DOI | MR | Zbl

[13] Cohen P., “Homomorphisms of group algebras”, Amer. J. Math., 82 (1960), 213–226 | DOI | MR | Zbl | DOI | MR | Zbl

[14] Copson E. T., Asymptotic expansions, Cambridge Tracts in Math., 55, Cambridge Univ. Press, New York, 1965 | MR | Zbl | MR | Zbl

[15] Erdös P., Rényi A., “A probabilistic approach to problems of Diophantine approximation”, Illinois J. Math., 1 (1957), 303–315 | DOI | MR | Zbl | DOI | MR | Zbl

[16] Garnett J., Bounded analytic functions, Pure Appl. Math., 96, Acad. Press, Inc., New York, 1981 | MR | Zbl | MR | Zbl

[17] Gerver J., “The differentiability of the Riemann function at certain rational multiples of $\pi$”, Amer. J. Math., 92 (1970), 33–55 | DOI | MR | Zbl | DOI | MR | Zbl

[18] Gerver J., “More on the differentiability of the Riemann function”, Amer. J. Math., 93 (1971), 33–41 | DOI | MR | Zbl | DOI | MR | Zbl

[19] Gerver J., “On cubic lacunary Fourier series”, Trans. Amer. Math. Sos., 355:11 (2003), 4297–4337 | DOI | MR | DOI | MR

[20] Girard D. M., “The behavior of the norm of an automorphism of the unit disk”, Pacific J. Math., 47 (1973), 443–456 | DOI | MR | Zbl | DOI | MR | Zbl

[21] Gluskin E., Meyer M., Pajor A., “Zeros of analytic functions and norms of inverse matrices”, Israel J. Math., 87:1-3 (1994), 225–242 | DOI | MR | Zbl | DOI | MR | Zbl

[22] Gordon J., Hedenmalm H., “The composition operators on the space of Dirichlet series with square-summable coefficients”, Michigan Math. J., 46:2 (1999), 313–329 | DOI | MR | Zbl | DOI | MR | Zbl

[23] Graham S., Kolesnik G., van der Corput's method of exponential sums, London Math. Soc. Lecture Notes Ser., 126, Cambridge Univ. Press, Cambridge, 1991 | MR | MR

[24] Indritz J., “An inequality for Hermite polynomials”, Proc. Amer. Math. Soc., 12 (1961), 981–983 | DOI | MR | Zbl | DOI | MR | Zbl

[25] Itatsu S., “Differentiability of Riemann's function”, Proc. Japan. Acad. Math. Sci., 57:10 (1981), 492–495 | MR | Zbl | MR | Zbl

[26] Jaffard S., “The spectrum of singularities of Riemann's function”, Rev. Mat. Iberoam., 12:2 (1996), 441–460 | DOI | MR | Zbl | DOI | MR | Zbl

[27] Kahane J.-P., Séries de Fourier absolument convergentes, Ergeb. Math. Grenzgeb., 50, Springer-Verlag, New York, 1970 | MR | MR

[28] Kahane J.-P., “Sur certaines classes de series de Fourier absolument convergentes”, J. Math. Pure Appl. (9), 35 (1956), 249–259 | MR | Zbl | MR | Zbl

[29] Lefèvre P., Li D., Queffélec H., Rodríguez-Piazza L., Boundedness of composition operators on general weighted Hardy spaces of analytic functions, 2020, arXiv: 2011.14928 | MR | MR

[30] Leibenzon Z. L., “O koltse funktsii s absolyutno skhodyaschimisya ryadami Fure”, Uspekhi mat. nauk, 9:3 (1954), 157–162 | MR | MR

[31] Montgomery H. L., Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS Reg. Conf. Ser. Math., 84, Amer. Math. Soc., Providence, RI, 1994 | DOI | MR | Zbl | DOI | MR | Zbl

[32] Newman D., “Homomorphisms of $\ell_{+}$”, American J. Math., 91 (1969), 37–46 | DOI | MR | Zbl | DOI | MR | Zbl

[33] Nikolski N., “Condition numbers of large matrices and analytic capacities”, Algebra i analiz, 17:4 (2005), 125–180 | MR | MR

[34] Nikolski N., Operators, function, and systems: an easy reading, v. 1, Math. Surveys Monogr., 92, Amer. Math. Soc., Providence, RI, 2002 | MR | MR

[35] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980

[36] Queffélec H., Dérivabilité de certaines sommes de séries de Fourier lacunaires, Thèse de troisième cycle, Univ. d'Orsay, 1971 | MR | MR

[37] Queffélec H., “Dérivabilité de certaines sommes de séries de Fourier lacunaires”, C. R. Acad. Sci. Paris, 273 (1971), 291–293 | MR | Zbl | MR | Zbl

[38] Queffélec H., “Norm of the inverse of a matrix; solution to a problem of Schäffer”, Harmonic analysis from the pichorides viewpoint (Anogia, 1995), Publ. Math. Orsay, Univ. Paris XI, Orsay, 1996, 68–87 | MR | Zbl | MR | Zbl

[39] Queffélec H., “Sur un théorème de Gluskin–Meyer–Pajor”, C. R. Acad. Sci. Paris Sér. I Math., 317:2 (1993), 155–158 | MR | Zbl | MR | Zbl

[40] Queffélec M., Queffélec H., Diophantine approximation and Dirichlet series, Texts and Readings in Math., 80, 2nd ed., Springer, Singapore, 2020 | DOI | MR | Zbl | DOI | MR | Zbl

[41] Robert O., “On van der Corput's $k$th derivative test for exponential sums”, Indag. Math., 27:2 (2016), 559–589 | DOI | MR | Zbl | DOI | MR | Zbl

[42] Rudin W., Fourier analysis on groups, Intersci. Tracts Pure Appl. Math., 12, Intersci. Publ., New York, 1962 | MR | Zbl | MR | Zbl

[43] Schäffer J. J., “Norms and determinants of linear mappings”, Math. Z., 118 (1970), 331–339 | DOI | MR | Zbl | DOI | MR | Zbl

[44] Shapiro J., Composition operators and classical function theory, Universitext Tracts Math., Springer-Verlag, New-York, 1991 | MR | MR

[45] Szehr O., Zarouf R., “On the asymptotic behavior of Jacobi polynomials with first varying parameter”, J. Approx. Theory, 277:10 (2022), 105702, 31 pp. | DOI | MR | Zbl | DOI | MR | Zbl

[46] Szehr O., Zarouf R., “Explicit counterexamples to Schäffer's conjecture”, J. Math. Pures Appl. (9), 146 (2021), 1–30 | DOI | MR | Zbl | DOI | MR | Zbl

[47] Szehr O., Zarouf R., “$l_{p}$-norms of Fourier coefficients of powers of a Blaschke factor”, J. Anal. Math., 140:1 (2020), 1–30 | DOI | MR | Zbl | DOI | MR | Zbl

[48] Szehr O., Zarouf R., A constructive approach to Schäffer conjecture, 2017, arXiv: 1705.10704 | Zbl | Zbl

[49] Sz.-Nagy B., Foias C., Harmonic analysis of operators on Hilbert space, North-Holland Publ. Co., Amsterdam-London, 1970 | MR | Zbl | MR | Zbl

[50] Tenenbaum G., Introduction to analytic and probabilistic number theory, Grad. Stud. in Math., 163, Third ed., Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl | DOI | MR | Zbl

[51] Titchmarsh E. C., The theory of the Riemann zeta function, Second ed., Oxford Univ. Press, New York, 1986 | MR | Zbl | MR | Zbl

[52] Turán P., On a new method of analysis and its applications, Pure and Appl. Math., Wiley-Intersci. Publ., New-York, 1984 | MR | Zbl | MR | Zbl

[53] Wong R., Asymptotic approximations of integrals, Classics in Appl. Math., 34, Soc. Industr. Appl. Math. (SIAM), Philadelphia, PA, 2001 | MR | MR