Global pointwise estimates of positive solutions to sublinear equations
Algebra i analiz, Tome 34 (2022) no. 3, pp. 296-330

Voir la notice de l'article provenant de la source Math-Net.Ru

Bilateral pointwise estimates are provided for positive solutions $u$ to the sublinear integral equation $$ u = \mathbf{G}(\sigma u^q) + f \textrm{ in } \Omega, $$ for $0 q 1$, where $\sigma\ge 0$ is a measurable function or a Radon measure, $ f \ge 0$, and $\mathbf{G}$ is the integral operator associated with a positive kernel $G$ on $\Omega\times\Omega$. The main results, which include the existence criteria and uniqueness of solutions, hold true for quasi-metric, or quasi-metrically modifiable kernels $G$. As a consequence, bilateral estimates, are obtained, along with existence and uniqueness, for positive solutions $u$, possibly unbounded, to sublinear elliptic equations involving the fractional Laplacian, $$ (-\Delta)^{\frac{\alpha}{2}} u = \sigma u^q + \mu \textrm{ in } \Omega, u=0 \textrm{ in } \Omega^c, $$ where $0$, and $\mu, \sigma \ge 0$ are measurable functions, or Radon measures, on a bounded uniform domain $\Omega \subset \mathbb{R}^n$ for $0 \alpha \le 2$, or on the entire space $\mathbb{R}^n$, a ball or half-space, for $0 \alpha $.
Keywords: sublinear equations, Green's kernel, weak maximum principle.
Mots-clés : quasi-metric kernels
@article{AA_2022_34_3_a13,
     author = {I. E. Verbitsky},
     title = {Global pointwise estimates of positive solutions to sublinear equations},
     journal = {Algebra i analiz},
     pages = {296--330},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_3_a13/}
}
TY  - JOUR
AU  - I. E. Verbitsky
TI  - Global pointwise estimates of positive solutions to sublinear equations
JO  - Algebra i analiz
PY  - 2022
SP  - 296
EP  - 330
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_3_a13/
LA  - en
ID  - AA_2022_34_3_a13
ER  - 
%0 Journal Article
%A I. E. Verbitsky
%T Global pointwise estimates of positive solutions to sublinear equations
%J Algebra i analiz
%D 2022
%P 296-330
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2022_34_3_a13/
%G en
%F AA_2022_34_3_a13
I. E. Verbitsky. Global pointwise estimates of positive solutions to sublinear equations. Algebra i analiz, Tome 34 (2022) no. 3, pp. 296-330. http://geodesic.mathdoc.fr/item/AA_2022_34_3_a13/

[1] Adams D. R., Hedberg L. I., Function spaces and potential theory, Grundlehren Math. Wiss., 314, Springer-Verlag, Berlin, 1996 | DOI | MR | DOI | MR

[2] Aikawa H., “Boundary Harnack principle and Martin boundary for a uniform domain”, J. Math. Soc. Japan, 53 (2001), 119–145 | DOI | MR | Zbl | DOI | MR | Zbl

[3] Ancona A., “Some results and examples about the behaviour of harmonic functions and Green's functions with respect to second order elliptic operators”, Nagoya Math. J., 165 (2002), 123–158 | DOI | MR | Zbl | DOI | MR | Zbl

[4] Boccardo L., Orsina L., “Sublinear equations in $L^s$”, Houston J. Math., 20 (1994), 99–114 | MR | Zbl | MR | Zbl

[5] Brelot M., Lectures on potential theory, Lectures Math., 19, Tata Inst. Fundam. Research, Bombay, 1960 | MR | Zbl | MR | Zbl

[6] Brezis H., Kamin S., “Sublinear elliptic equations on $\mathbb{R}^n$”, Manuscripta Math., 74 (1992), 87–106 | DOI | MR | Zbl | DOI | MR | Zbl

[7] Brezis H., Oswald L., “Remarks on sublinear elliptic equations”, Nonlinear Anal., 10 (1986), 55–64 | DOI | MR | Zbl | DOI | MR | Zbl

[8] Cao D., Verbitsky I. E., “Nonlinear elliptic equations and intrinsic potentials of Wolff type”, J. Funct. Anal., 272 (2017), 112–165 | DOI | MR | Zbl | DOI | MR | Zbl

[9] Doob J. L., Classical potential theory and its probabilistic counterpart, Grundlehren Math. Wiss., 262, Springer-Verlag, New York, 1984 | DOI | MR | Zbl | DOI | MR | Zbl

[10] Frazier M., Nazarov F., Verbitsky I., “Global estimates for kernels of Neumann series and Green's functions”, J. Lond. Math. Soc. (2), 90:3 (2014), 903–918 | DOI | MR | Zbl | DOI | MR | Zbl

[11] Frazier M., Verbitsky I., “Postive solutions to Schrödinger's equation and the exponential integrability of the balayage”, Ann. Inst. Fourier (Grenoble), 67:4 (2017), 1393–1425 | DOI | MR | Zbl | DOI | MR | Zbl

[12] Frazier M., Verbitsky I., “Positive solutions and harmonic measure for Schrödinger operators in uniform domains”, Pure Appl. Funct. Analysis (to appear) , arXiv: 2011.04083

[13] Frazier M., Verbitsky I., “Existence of the gauge for fractional Laplacian Schrödinger operators”, J. Geom. Anal., 31:9 (2021), 9016–9044 | DOI | MR | Zbl | DOI | MR | Zbl

[14] Fuglede B., “On the theory of potentials in locally compact spaces”, Acta Math., 103 (1960), 139–215 | DOI | MR | Zbl | DOI | MR | Zbl

[15] Fuglede B., “Le théorème du minimax et la théorie fine du potentiel”, Ann. Inst. Fourier (Grenoble), 15 (1965), 65–88 | DOI | MR | DOI | MR

[16] Gagliardo E., “On integral transformations with positive kernel”, Proc. Amer. Math. Soc., 16 (1965), 429–434 | MR | Zbl | MR | Zbl

[17] Grigor'yan A., Sun Y., Verbitsky I., “Superlinear elliptic inequalities on manifolds”, J. Funct. Anal., 278:9 (2020), 108444 | DOI | MR | Zbl | DOI | MR | Zbl

[18] Grigor'yan A., Verbitsky I., “Pointwise estimates of solutions to nonlinear equations for nonlocal operators”, Ann. Scuola Norm. Super. Pisa Cl. Sci. (5), 20:2 (2020), 721–750 | MR | Zbl | MR | Zbl

[19] Hansen W., “Uniform boundary Harnack principle and generalized triangle property”, J. Funct. Anal., 226:2 (2005), 452–484 | DOI | MR | Zbl | DOI | MR | Zbl

[20] Hansen W., Netuka I., “On the Picard principle for ${\Delta} + \mu$”, Math. Z., 270:3-4 (2012), 783–807 | DOI | MR | Zbl | DOI | MR | Zbl

[21] Hedberg L.-I., Wolff T. H., “Thin sets in nonlinear potential theory”, Ann. Inst. Fourier (Grenoble), 33:4 (1983), 161–187 | DOI | MR | Zbl | DOI | MR | Zbl

[22] Kalton N. J., Verbitsky I. E., “Nonlinear equations and weighted norm inequalities”, Trans. Amer. Math. Soc., 351:9 (1999), 3441–3497 | DOI | MR | Zbl | DOI | MR | Zbl

[23] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Gos. izd. fiz.-mat. lit., M., 1962 | MR | MR

[24] Marcus M., Véron L., Nonlinear second order elliptic equations involving measures, De Gruyter Ser. Nonlinear Anal. Appl., 21, Walter de Gruyter, Berlin–Boston, 2014 | MR | MR

[25] Mazya V. G., Prostranstva Soboleva, LGU, L., 1985 | MR | MR

[26] Mazya V. G., Khavin V. P., “Nelineinaya teoriya potentsiala”, Uspekhi mat. nauk, 27:6 (1972), 67–138 | MR | Zbl | MR | Zbl

[27] Nikolski N. K., Verbitsky I. E., “Fourier multipliers for weighted $L^{2}$ spaces with Lévy–Khinchin–Schoenberg weights”, J. Reine Angew. Math., 731 (2017), 159–201 | MR | Zbl | MR | Zbl

[28] Quinn S., Verbitsky I. E., “A sublinear version of Schur's lemma and elliptic PDE”, Anal. PDE, 11:2 (2018), 439–466 | DOI | MR | Zbl | DOI | MR | Zbl

[29] Seesanea A., Verbitsky I. E., “Finite energy solutions to inhomogeneous nonlinear elliptic equations with sub-natural growth terms”, Adv. Calc. Var., 13 (2020), 53–74 | DOI | MR | Zbl | DOI | MR | Zbl

[30] Verbitsky I. E., “Sublinear equations and Schur's test for integral operators”, 50 Years with Hardy Spaces, a Tribute to Victor Havin, Oper. Theory: Adv. Appl., 261, Birkhäuser, Cham, 2018, 465–482 | MR | MR

[31] Verbitsky I. E., “Bilateral estimates of solutions to quasilinear elliptic equations with sub-natural growth terms”, Adv. Calc. Var., arXiv: 2101.02368 | MR | MR